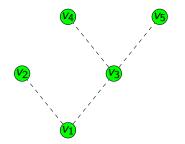
Translation length formula for two-generated groups acting on trees

Kamil Orzechowski

University of Rzeszów

International scientific online conference Algebraic and geometric methods of analysis May 26–29, 2025, Ukraine

Combinatorial tree T = (V(T), E(T))



$$V(T) = \{v_1, \dots, v_5\}$$

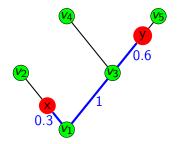
$$E(T) = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_3, v_4\}, \{v_3, v_5\}\}$$

$$d: V(T) \times V(T) \to \mathbb{Z}$$

e.g. $d(v_2, v_5) = 3$

포⊁ 포

The geometric realization (X, d) of T



$$X = \left(\bigsqcup_{e \in E(T)} [0,1]_{\mathbb{R}}\right) / \sim$$
$$d: X \times X \to \mathbb{R}$$
e.g. $d(x,y) = 1.9$

< 円

æ

A segment joining $x, y \in X$ in a metric space (X, d) is the image of an isometric embedding $i : [0, d(x, y)]_{\mathbb{R}} \to X$, i(0) = x, i(d(x, y)) = y.

Definition

An \mathbb{R} -tree is a metric space (X, d) such that:

- **()** any $x, y \in X$ can be joined by a unique segment, denoted by [x, y];
- **2** $[x, y] \cap [x, z]$ is a segment with x as one endpoint;
- **3** $[x, y] \cup [x, z] = [y, z]$ if $[x, y] \cap [x, z] = \{x\}$.

An $\ensuremath{\mathbb{R}}\xspace$ -tree that is not the realization of any combinatorial tree

$$X = \mathbb{R}^{2}, d - \text{"jungle river" metric}$$

$$x = (-2,1)$$

$$w = (1,0)$$

$$w = (1,0)$$

$$z = (3,-1)$$

$$d(x,y) = 6, d(x,z) = 7$$

$$[x,y] \cap [x,z] = [x,w]$$

$$[w,y] \cup [w,z] = [y,z]$$

 $(\Lambda, +, \leq)$ – a nontrivial totally ordered Abelian group Examples: $\Lambda \leq \mathbb{R}$, $\mathbb{Z} \oplus \mathbb{Z}$, $\mathbb{R} \oplus \mathbb{R}$ (with the lexicographic order), * \mathbb{R} (hyperreal numbers)

- We can define a Λ -metric $d: X \times X \to \Lambda$ on X and a Λ -metric space (X, d).
- The family of open balls in (X, d) is a base of a normal Hausdorff topology on X.
- We naturally define an isometry between A-metric spaces.
- The group Λ is a Λ-metric space with the Λ-metric d(x, y) := |x − y|, where |λ| := max{λ, −λ}.
- An interval in Λ is defined as $[a, b]_{\Lambda} := \{\lambda \in \Lambda : a \leq \lambda \leq b\}$ for $a \leq b$.

The definition of an $\mathbb R\text{-tree}$ can be generalized to $\Lambda.$

Definition

A Λ -tree is a Λ -metric space (X, d) such that:

- **(**) any $x, y \in X$ can be joined by a unique segment, denoted by [x, y];
- ② $[x, y] \cap [x, z]$ is a segment with x as one endpoint;
- **3** $[x, y] \cup [x, z] = [y, z]$ if $[x, y] \cap [x, z] = \{x\}$.

Remark

 \mathbb{Z} -trees correspond exactly to combinatorial trees.

An isometry $g: X \to X$ of a Λ -tree X can be one of three types:

- elliptic isometry g fixes a point in X;
- **2** inversion g has no fixed point, but g^2 does;
- **I hyperbolic isometry** $-g^2$ has no fixed point.

Remark

If $\Lambda = 2\Lambda$ (e.g., $\Lambda = \mathbb{R}$), there are no inversions.

8/22

Definition

The translation length of an isometry g of a Λ -tree (X, d) is

$$||g|| := \begin{cases} 0, & \text{if } g \text{ is an inversion,} \\ \min\{d(x, gx) \colon x \in X\} & \text{otherwise.} \end{cases}$$

Definition

The *axis* of a hyberbolic isometry $g: X \to X$ is the set

$$A_g := \{x \in X : d(x, gx) = ||g||\}.$$

It is a nonempty subtree of X isometric to a convex subset of Λ ; the action of g on A_g corresponds to the translation by ||g|| > 0.

Example 1 (Cayley graph of the free group F(a, b))

We treat X = F(a, b) as a \mathbb{Z} -tree; F(a, b) acts on X by left multiplication. $\|ab\| = 2$ $A_{ab} = \{\dots, b^{-1}a^{-1}, b^{-1}, 1, a, ab, \dots\}$ ab^{-1} b^{-1}

 b^{-2}

Let K be a field with a non-Archimedean valuation v, i.e., a homomorphism $v: K^* \to \Lambda$ such that $v(a + b) \ge \min\{v(a), v(b)\}$ for $a + b \ne 0$.

There exists a Λ -tree X_{ν} and an isometric action of GL(2, K) on X_{ν} with the translation length

$$\|g\| = \max\{v(\det g) - 2v(\operatorname{tr} g), 0\}.$$

Remarks

• The action of SL(2, K) on X_v is without inversions.

2 If $\Lambda = \mathbb{Z}$, X_v is an infinite, regular combinatorial tree.

Definition

A function $\|\cdot\|: G \to \Lambda_+$ is called a *pseudo-length* if, for all $g, h \in G$, it satisfies the conditions:

1 max $\{0, \|gh\| - \|g\| - \|h\|\} \in 2\Lambda$ if $\|g\| > 0$, $\|h\| > 0$;

2
$$\|ghg^{-1}\| = \|h\|;$$

- **3** $||gh|| = ||gh^{-1}||$ or max $\{||gh||, ||gh^{-1}||\} \le ||g|| + ||h||;$
- $||gh|| = ||gh^{-1}|| > ||g|| + ||h||$ or max{ $||gh||, ||gh^{-1}||$ } = ||g|| + ||h|| if ||g|| > 0, ||h|| > 0.

Theorem (Parry 1988)

A function $\|\cdot\|: G \to \Lambda_+$ is a pseudo-length if and only if there exists a Λ -tree X and an action of G on X by isometries such that $\|g\|$ is the translation length of g for $g \in G$.

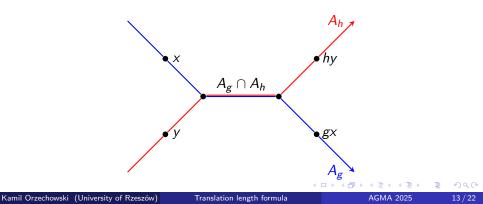
イロト イポト イヨト イヨト

э

Ping-pong pair

Definition

We call $(g, h) \in G \times G$ a ping-pong pair if ||g|| > 0, ||h|| > 0, and $|||g|| - ||h||| < \min\{||gh||, ||gh^{-1}||\}$. Geometrically, it means that $A_g \cap A_h = \emptyset$ or $A_g \cap A_h$ is a segment "shorter" than $\min\{||g||, ||h||\}$.



An action of G on a topological space X is *properly discontinuous* if, for each $x \in X$, there exist a neighborhood $U \ni x$ such that $g(U) \cap U = \emptyset$ for $g \neq 1_G$.

Theorem (Culler–Morgan 1985, Chiswell 1994)

If G acts on a Λ -tree X by isometries and $(a, b) \in G \times G$ is a ping-pong pair, then the subgroup (a, b) is free of rank two, and acts on X properly discontinuously and without inversions.

Proof methods: referring to the geometry of Λ -trees, "ping-pong lemma".

Theorem (Orzechowski 2025)

If $\|\cdot\|$ is a pseudo-length on G and (a,b) is a ping-pong pair, then

$$2\|w\| = \left(\sum_{i=1}^{n-1} \|x_i x_{i+1}\|\right) + \|x_n x_1\| > 0.$$

for any cyclically reduced word $w = x_1 \dots x_n$, $n \ge 1$, $x_i \in \{a, b, a^{-1}, b^{-1}\}$.

Proof methods: a combinatorial approach using the axioms of a pseudo-length, induction on word length.

15/22

Let $w = a^{m_1}b^{n_1}\dots a^{m_k}b^{n_k}$, $k \ge 1$, and $m_1,\dots,m_k, n_1,\dots,n_k \in \mathbb{Z} \setminus \{0\}$. Then

$$\|w\| = \|a\| \sum_{i=1}^{k} (|m_i| - 1) + \|b\| \sum_{i=1}^{k} (|n_i| - 1) + \frac{N}{2} \|ab^{-1}\| + \frac{2k - N}{2} \|ab\|,$$

where N denotes the number of sign changes in the sequence $(m_1, n_1, \ldots, m_k, n_k, m_1)$.

Corollary

The group $\langle a, b \rangle$ is free of rank two, and acts properly discontinuously and without inversions on the corresponding Λ -tree X.

Inverse problem: construction of a pseudo-length

Let $\alpha, \beta, \gamma, \delta \in \Lambda$ satisfy the conditions

$$\begin{array}{l} \gamma - \alpha - \beta \in 2\Lambda, \quad \delta - \alpha - \beta \in 2\Lambda; \\ \gamma = \delta > \alpha + \beta \quad \text{or } \max\{\gamma, \delta\} = \alpha + \beta; \\ \alpha > 0, \ \beta > 0, \ |\alpha - \beta| < \min\{\gamma, \delta\}. \end{array}$$

$$(1)$$

Let $\Sigma := \{a, b, a^{-1}, b^{-1}\}$ and define $f : \Sigma \times \Sigma \to \Lambda$ as follows: $f(a, a) = 2\alpha$, $f(b, b) = 2\beta$, $f(a, b) = \gamma$, $f(a, b^{-1}) = \delta$, $f(x, y) = f(y, x) = f(y^{-1}, x^{-1})$, $f(x, x^{-1}) = 0$ for $x, y \in \Sigma$.

Theorem (Orzechowski 2025)

Let $\|1\| := 0$, and for $w \neq 1$ put

$$\|w\| := \frac{1}{2} \left(\sum_{i=1}^{n-1} f(x_i, x_{i+1}) + f(x_n, x_1) \right)$$

where $x_1 \dots x_n$ is a cyclically reduced word conjugate to w. Then $\|\cdot\|$ is a pseudo-length on F(a, b).

Corollary

If $\alpha, \beta, \gamma, \delta \in \Lambda$ satisfy the conditions (1), then there exists a unique pseudo-length $\|\cdot\|$: $F(a, b) \to \Lambda_+$ such that $\|a\| = \alpha$, $\|b\| = \beta$, $\|ab\| = \gamma$, $\|ab^{-1}\| = \delta$.

We denote this pseudo-length by $\|\cdot\|_{\alpha,\beta,\gamma,\delta}$.

Definition

A pseudo-length $\|\cdot\|: G \to \Lambda_+$ is called *purely hyperbolic* if $\|g\| > 0$ for all $g \neq 1_G$. It corresponds to the translation length function of a **free** action **without inversions** on a Λ -tree.

Theorem

Let $\{0\} \neq \Lambda \leq \mathbb{R}$ and $\|\cdot\| \colon F(a, b) \to \Lambda_+$ be a purely hyperbolic pseudo-length. There exists an automorphism σ of F(a, b) and $\alpha, \beta, \gamma, \delta \in \Lambda$ satisfying (1) such that

$$\|w\| = \|\sigma(w)\|_{\alpha,\beta,\gamma,\delta}$$
 for $w \in F(a,b)$.

Finding the automorphism σ involves performing a finite sequence of Nielsen transformations on the basis (a, b) until we get a basis (g, h) that is a ping-pong pair.

イロト イヨト イヨト ・

Algorithm (Culler–Vogtmann 1988, Chiswell 1994)

Input: a purely hyperbolic pseudo-length $\|\cdot\|$: $F(a, b) \to \mathbb{R}_+$ **Output:** a ping-pong pair generating F(a, b)(g, h) := (a, b)if ||g|| < ||h|| then (g,h) := (h,g)if $||gh|| < ||gh^{-1}||$ then $(g,h) := (g,h^{-1})$ while $||g|| - ||h|| = ||gh^{-1}||$ do $(g,h) := (gh^{-1},h)$ if ||g|| < ||h|| then (g,h) := (h,g)if $||gh|| < ||gh^{-1}||$ then $(g,h) := (g,h^{-1})$ if $||g|| - ||h|| < ||gh^{-1}||$ then return (g, h)else return (gh^{-1}, h)

20 / 22

References

- I. M. CHISWELL, Properly discontinuous actions on Λ-trees, Proc. Edinburgh Math. Soc. (2), 37 (1994), pp. 423–444.
- M. CULLER AND J. W. MORGAN, *Group actions on* ℝ-*trees*, Proc. London Math. Soc. (3), 55 (1987), pp. 571–604.
- M. CULLER AND K. VOGTMANN, *The boundary of outer space in rank two*, in Arboreal group theory (Berkeley, CA, 1988), vol. 19 of Math. Sci. Res. Inst. Publ., Springer, New York, 1991, pp. 189–230.
- K. ORZECHOWSKI, *Translation length formula for two-generated groups acting on trees*, preprint arXiv:2504.18108, (2025).
- W. PARRY, Axioms for translation length functions, in Arboreal group theory (Berkeley, CA, 1988), vol. 19 of Math. Sci. Res. Inst. Publ., Springer, New York, 1991, pp. 295–330.

Image: A matrix and a matrix

Kamil Orzechowski

University of Rzeszów, Poland kamilo@dokt.ur.edu.pl

æ

22 / 22