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Intfroduction to gKdV Equation

Korteweg—de Vries (KdV) Equation:

Ut + Uy + 6uuy, = 0. M

m Describes wave evolution in shallow water.
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Intfroduction to gKdV Equation

Korteweg—de Vries (KdV) Equation:

Ut + Uy + 6uuy, = 0. M

m Describes wave evolution in shallow water.
m Example of an integrable system.

m First derived in 1895 by Korfeweg and de Vries — solitons
((Korteweg and De Vries, 1895)).

Generalized KdV (gKdV) Equation:
Ut + Uyxx + O(U)UX =0, @
where a € C*(R).

2/32



Travelling Wave Solutions
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Travelling Wave Solutions

s A m Apply transformation
z=x—ct, y(z) =u(x,1t).
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Travelling Wave Solutions

m Apply transformation
z=x—ct, y(z) =u(x,1).
m Leads to ODE:

U + Uy + a(u)u, =0
1
—coy' +y" +aly)y =0
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C°-structures integration method

See (Pan-Collantes et al., 2023c, Pan-Collantes et al., 2023b,
Pan-Collantes et al., 2023a, Pan-Collantes et al., 2025)
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Associated Distribution

The associated distribution to the ODE is generated by:

Z = 0,4+ 10y + y20,, + (¢ — a(y))y10,,.
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C°-structures integration method

See (Pan-Collantes et al., 2023c, Pan-Collantes et al., 2023b,
Pan-Collantes et al., 2023a, Pan-Collantes et al., 2025)

Associated Distribution

The associated distribution to the ODE is generated by:

Z=0,+ y18y = )/28),] aF (C = a(y))y18y2.
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C®°-structure for an ODE

Definition (C°°-structure)

An ordered collection of vector fields (Xi, . .., Xm) is a C*-structure for
an ODE with associated vector field Z if the distribution

SH{z,x,...,X})
has constant rank i 4+ 1 and is involutive for each i such that 1 < i < m.

Generalization of solvable structures: (Basarab-Horwath, 1991).
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C®°-structure for an ODE

Definition (C°°-structure)

An ordered collection of vector fields (Xi, . .., Xm) is a C*-structure for
an ODE with associated vector field Z if the distribution

SH{z,x,...,X})
has constant rank i 4+ 1 and is involutive for each i such that 1 < i < m.

Generalization of solvable structures: (Basarab-Horwath, 1991).

Involutivity

Given X,Y € S({Z,X,...,X}). we have [X,Y] € S({Z,X,...,X}).

Frobenius Theorem

A distribution is involutive if and only if it admits a local integral manifold.
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In R* with coordinates (z, Y, Y1, )/2), we have the following vector field:

Z=0,+ y1ay + Y2ay1 + (C - a(y))Y1ay2
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C*°-structure

In R* with coordinates (z, y, y1, y2). we have the following vector field:

Z=0,+y10y + y20,, + (c — a(y))y10,,

Involutive Distrioutions

m S({Z}).rank 1

m S({Z,X}).rank 2

m S{Z,X,X%}).rank 3

m S({Z, X, X2, X3}). rank 4
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C*°-structure

In R* with coordinates (z, y, y1, y2). we have the following vector field:

Z=0,+y10y + y20,, + (c — a(y))y10,,

Involutive Distrioutions

m S({Z}).rank 1

m S({Z,X}). rank 2

m S({Z,X1,%}).rank 3

m S({Z, X, %, Xs}). rank 4 — R4
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Integration Method using C*°-structures

Given a C*-structure (X;, Xo, X3) for the ODE Z:
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Integration Method using C*°-structures

Given a C*-structure (X;, Xo, X3) for the ODE Z:
Define 1-forms: Volume form = dz A dy A dy; A dys.

w3 = XpuX11Z_8
Wy = X3 X178
w1 = X3iXp1Z 102
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Integration Method using C*°-structures

Given a C*-structure (X;, Xo, X3) for the ODE Z:
Define 1-forms: Volume form = dz A dy A dy; A dys.

w3 = XpuX11Z_8
Wy = X3 X178
w1 = X3iXp1Z 102

Pfaffian Equation:

is completely integrable.

Find a first integral I = I3(z, y, y1, y2) by solving the linear
homogeneous PDE
dl3 VAN W3 = 0.
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Integration Method using C*°-structures

Define Level Sets: Consider level sets s = C3 (C3 € R). Find a
local parametrization ¢3.
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Integration Method using C*°-structures

Define Level Sets: Consider level sets 5 = C3 (C3 € R). Find a
local parametrization ¢3.

I3(27 Y, Y1, y2) - C3 9/32



Integration Method using C*°-structures

Define Level Sets: Consider level sets s = C3 (C3 € R). Find a
local parametrization ¢3.
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Integration Method using C*°-structures

B Restrict Forms and Repeat: Pullback
w2|{/3:cs} 1= 13(w2)

Wi ’{/3203} = 13(wn)
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Integration Method using C*°-structures

B Restrict Forms and Repeat: Pullback
w2|{/3:cs} 1= 13(w2)

Wi ’{/3203} = 13(wn)

);(/;//f

R3
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Integration Method using C*°-structures

Compose the parametrizations: Composition
130100 : R > R*

is a local parametrization of the integral curves of Z.
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Integration Method using C*°-structures

Compose the parametrizations: Composition
130100 : R > R*

is a local parametrization of the integral curves of Z.
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Integration Method using C*°-structures

m Parametric expression: 13 0 Lo O ¢
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Integration Method using C*°-structures

m Parametric expression: 13 0 Lo O ¢

m Explicit expression: the parametrization is of the form

(z.1(2), 7' (2), 7" (2))-

12/32



Integration Method using C*°-structures

m Parametric expression: 13 0 Lo O ¢

m Explicit expression: the parametrization is of the form
(z.1(2), 7' (2), 7" (2))-

m Implicit expression:

h(z,y; G, Cs) = Cy.
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The gKdV ordinary differential equation

Third-Order ODE Vector Field

Z=20,+ y18y aF y28y1 + (Cy1 - O(y))/])ayQ
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The gKdV ordinary differential equation

Third-Order ODE Vector Field

Z=20,+ y18y aF y28y1 + (Cy1 - O(y))/])ayQ

C°-structure needed!
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First vector field

Lie Symmetry

[32,2] =0

14/32



First vector field

Lie Symmetry

[0,,Z] =0 = S({z,0,}) is involutive
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First vector field

Lie Symmetry

[0,,Z] =0 = S({z,0,}) is involutive

First vector field in the C°°-structure
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Ansatz for X,

Vector Field Ansatz

X2 - 8yl + 77(27 Y, y])ayg

1 to be determined
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Ansatz for X,

Vector Field Ansatz

X2 — 8y1 + 77(27 Y, y])8y2

1 to be determined

Involutivity Condition

[X2, X;] linear combination of {Z, X, X, }
[X2, Z] linear combination of {Z, X1, X2}
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Determining Equations

1 + nyyE 4y vive — nya + o =0
n, =0
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Determining Equations

1 + 0y 4y vave — nya + nyn =0

n; =0
Particular Solution
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C*°-structure

Third vector field

X3 = 8y2
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C*°-structure

Third vector field

X3 = 8y2

C>-structure for Z = 0, + y10y + y20,, + (cy1 — a(y)y1)0,,

X'| = 8Z
14
Xo = 8)’1 + 78)/2

X3 = 8,,2
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C*-structure-based method

wy = —y;dz+ dy
Wy = —Yyp dy + y1 dy;

2
Y2 y
w3 = —y (7 +a(y) — C) dy + 71dy1 — y1dys
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C*-structure-based method

wy) = —y;dz+ ady
wy = —Yyo dy + y; dy

2
Y2 y
w3 =|—y (7 +a(y) — C> dy + 71dy1 —y1dy, =0
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Solution of ws

First Integral

1
Iy = yyy — 5)/12 — Hi(y)

where

Hhy) = / V(e — a(y))ay
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Solution of ws

First Integral

1
s = yy» — 5)/12 — Hi(y)

where

(y) = [ Ve - aty)ay

Level Set

{(Z) Y, y2) € RA . IS(Z7 Y, Y1, y2) — CS}
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Restriction to the level set

Parametrization

—+2H; —+2C:;
L3(27 Y, y]) = (Zy Y, 1, y12+;/)3)
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Restriction to the level set

Parametrization

2 4+-2H, (y)+2C:
L3(Z, Y, y]) — (27 Y, Y1, %)

w3’{l3:C3} =0
wil{p=c;} = —v1dz + dy
Vi +2HI(y) +2Cs

walfh=ca} = ™ dy + yrdy,
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Restriction to the level set

Parametrization

+2H (y)+2C;
L3(27 Y, y]) - (27 Y, 1, V12+;’)3)

w3|{/3:C3} =0
wn |{/3:cs} = —y1dz+ady

Vi +2HI(y) +2C5
2y

W {=cs} = dy +y1dyy =0
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Second Pfaffian equation

Solution to wy|,=c, =0

vy — 2yHo(y) + 2Cs

h=

y

Haly) = / ”1y(2y) o

where
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Second Pfaffian equation

Solution to wy|,=c, =0

vy — 2yHo(y) + 2Cs

) —
y

Haly) = / ”1y(2y) o

Level Set

{(27 Y, y]) S Ra o IZ(Z, Y, Y1, C3) e C2}

where
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Restriction to the level set

Parametrization

w2 (zy) = (z, v,V ¥(C2 + 2Ha(y)) — 203>
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Restriction to the level set

R3

Parametrization

©:(z,y) = (z, v,/ Y(Co + 2Ha(y)) — 203)
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Restriction to the level set

Parametrization

©:(z,y) = (z, v,/ Y(Co + 2Ho(y)) — 203)

w3 {=c,} =0,

w2|{/2=02} - 07

Wil{h=cy)| = —/v(Cz + 2Hy(y)) — 2Csdz + dy =0
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Last iteration

Solution fo wy|p—c,} =0

— 7 . — 1
h = Hs(y; C2, Cs), Hs(y) / /v L 20) - 26, dy
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General Solution

Implicit Solution

z— Ha(y; G, C3) = C
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General Solution

Implicit Solution

z— Ha(y; G, C3) = C

Undoing the transformation z = x — ct,  y(z) = u(x, 1)

Traveling Wave

U(X, 'I') = F(X —ct— G; G, Cs)
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General Solution

Implicit Solution

z— Ha(y; G, C3) = C

Undoing the transformation z = x — ct,  y(z) = u(x, 1)

Traveling Wave

U(X, 'I') = F(X —ct— G; G, C3)

Explicit expressions

The functions H;, H, H3 and F depend on the function a.
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Particular cases of the gKdV equation
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KdV equation: a(u) = éu

u(x,t) = gsech2 (—x+ct+ C1)) forc >0

R

u(x,t) = gsec2 (

5 (—x+ct+ C1)> forc <0
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Modified KaV: a(u) = u?

144¢ eVe(Cr—x+et)
u(x, t) = e2V/c(Ci—x+ct) 4 goac

forc >0
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Generalized KdV: a(u

1

N en(n+1)(n+2) g
u(x,t) = <2cosh2 (g\/E(Q —X—I—cf))) forc >0

1

u(x,t) = < cn G DGR >" forc <0

2cos? (21/c(Cy — x + ct))
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Schamel--KdV: a

Forc > 0:
900c e%\/E(CW —x+ct) 2
u(x, t) =
( ) ) 2400 e%ﬁ(c] —x+ct) 4 eﬁ(q —x+ct) e 67500ﬂC e 1440002
Forc < O:
o 2256 (Sa\fsin (w) +758c — £ cos® (W))
u(x,t) =

(75ﬁc_£cosz (w))z

where ¢ = 160° + 7503¢.
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m Goal: Find travelling wave solutions of the gKdV equation

U + U + a(u)u, =0,
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m Goal: Find travelling wave solutions of the gKdV equation

U + U + a(u)u, =0,

m Geometric method: Use of C°°-structures, a generalization of
solvable structures, to integrate the ODE derived from the
travelling wave reduction.

m General idea: Flag of foliations.

m Result: A unified and general method to derive explicit solutions for
a broad family of gkdV-type equations:

u(x,t) = F(x — ct — Cy; Cy, C3)

30/32
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Thanks for your attention!
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Thanks for your attention!
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