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Introduction to gKdV Equation

Korteweg−de Vries (KdV) Equation:

ut + uxxx + 6uux = 0. (1)

Describes wave evolution in shallow water.

Example of an integrable system.

First derived in 1895 by Korteweg and de Vries → solitons

([Korteweg and De Vries, 1895]).

Generalized KdV (gKdV) Equation:

ut + uxxx + a(u)ux = 0, (2)

where a ∈ C∞(R).
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Travelling Wave Solutions

Apply transformation

z = x − ct, y(z) = u(x, t).

Leads to ODE:

ut + uxxx + a(u)ux = 0

↓
−cy

′ + y
′′′ + a(y)y ′ = 0
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C∞-structures integration method

See [Pan-Collantes et al., 2023c, Pan-Collantes et al., 2023b,
Pan-Collantes et al., 2023a, Pan-Collantes et al., 2025]

Associated Distribution

The associated distribution to the ODE is generated by:

Z = ∂z + y1∂y + y2∂y1
+ (c − a(y))y1∂y2

.

The integral

manifolds of this

distribution

correspond to the

prolongation of

solutions of the ODE.

z 7→ (z, f(z), f ′(z), f ′′(z))
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C∞-structure for an ODE

Definition (C∞-structure)

An ordered collection of vector fields ⟨X1, . . . , Xm⟩ is a C∞-structure for

an ODE with associated vector field Z if the distribution

S({Z , X1, . . . , Xi})

has constant rank i + 1 and is involutive for each i such that 1 ≤ i ≤ m.

Generalization of solvable structures: [Basarab-Horwath, 1991].

Involutivity

Given X , Y ∈ S({Z , X1, . . . , Xi}), we have [X , Y ] ∈ S({Z , X1, . . . , Xi}).

Frobenius Theorem

A distribution is involutive if and only if it admits a local integral manifold.
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C∞-structure

In R4 with coordinates (z, y, y1, y2), we have the following vector field:

Z = ∂z + y1∂y + y2∂y1
+ (c − a(y))y1∂y2
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C∞-structure: visually
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Integration Method using C∞-structures

Given a C∞-structure ⟨X1, X2, X3⟩ for the ODE Z :

1 Define 1-forms: Volume form Ω = dz ∧ dy ∧ dy1 ∧ dy2.

ω3 = X2⌟X1⌟Z⌟Ω

ω2 = X3⌟X1⌟Z⌟Ω

ω1 = X3⌟X2⌟Z⌟Ω

2 Pfaffian Equation:
ω3 ≡ 0

is completely integrable.

Find a first integral I3 = I3(z, y, y1, y2) by solving the linear

homogeneous PDE

dI3 ∧ ω3 = 0.
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Integration Method using C∞-structures

3 Define Level Sets: Consider level sets I3 = C3 (C3 ∈ R). Find a

local parametrization ι3.
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Integration Method using C∞-structures

4 Restrict Forms and Repeat: Pullback

ω2|{I3=C3} := ι∗3(ω2)

ω1|{I3=C3} := ι∗3(ω1)
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Integration Method using C∞-structures

5 Compose the parametrizations: Composition

ι3 ◦ ι2 ◦ ι1 : R → R4

is a local parametrization of the integral curves of Z .
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Integration Method using C∞-structures

Solutions

Parametric expression: ι3 ◦ ι2 ◦ ι1

Explicit expression: the parametrization is of the form

(z, f(z), f ′(z), f ′′(z)).

Implicit expression:

I1(z, y;C2,C3) = C1.
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The gKdV ordinary differential equation

Third-Order ODE Vector Field

Z = ∂z + y1∂y + y2∂y1
+ (cy1 − a(y)y1)∂y2

C∞-structure needed!
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First vector field

Lie Symmetry

[∂z , Z ] = 0

⇒ S({Z , ∂z}) is involutive

First vector field in the C∞-structure

X1 = ∂z
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Ansatz for X2

Vector Field Ansatz

X2 = ∂y1
+ η(z, y, y1)∂y2

η to be determined

Involutivity Condition

[X2, X1] linear combination of {Z , X1, X2}
[X2, Z ] linear combination of {Z , X1, X2}
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Determining Equations

Conditions

η2
y1 + ηyy

2
1 + ηy1

y1y2 − ηy2 + ηzy1 = 0

ηz = 0

Particular Solution

η =
y1

y
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C∞-structure

Third vector field

X3 = ∂y2

C∞-structure for Z = ∂z + y1∂y + y2∂y1
+ (cy1 − a(y)y1)∂y2

X1 = ∂z

X2 = ∂y1
+

y1

y
∂y2

X3 = ∂y2
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C∞-structure-based method

1-Forms

ω1 = −y1 dz + dy

ω2 = −y2 dy + y1 dy1

ω3 = −y1

(
y2

y
+ a(y)− c

)
dy +

y2
1

y
dy1 − y1dy2
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Solution of ω3

First Integral

I3 = yy2 −
1

2
y

2
1 − H1(y)

where

H1(y) =

∫
y(c − a(y))dy

Level Set

{(z, y, y1, y2) ∈ R4 : I3(z, y, y1, y2) = C3}
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Restriction to the level set

Parametrization

ι3(z, y, y1) =
(

z, y, y1,
y

2

1
+2H1(y)+2C3

2y

)

ω3|{I3=C3} = 0

ω1|{I3=C3} = −y1dz + dy

ω2|{I3=C3} =



20/32

Restriction to the level set

Parametrization

ι3(z, y, y1) =
(

z, y, y1,
y

2

1
+2H1(y)+2C3

2y

)

ω3|{I3=C3} = 0

ω1|{I3=C3} = −y1dz + dy

ω2|{I3=C3} =



20/32

Restriction to the level set

Parametrization

ι3(z, y, y1) =
(

z, y, y1,
y

2

1
+2H1(y)+2C3

2y

)

ω3|{I3=C3} = 0

ω1|{I3=C3} = −y1dz + dy

ω2|{I3=C3} = −y2
1 + 2H1(y) + 2C3

2y
dy + y1dy1



20/32

Restriction to the level set

Parametrization
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y
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Second Pfaffian equation

Solution to ω2|I3=C3
≡ 0

I2 =
y2

1 − 2yH2(y) + 2C3

y

where

H2(y) =

∫
H1(y)

y2
dy

Level Set

{(z, y, y1) ∈ R3 : I2(z, y, y1;C3) = C2}
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Restriction to the level set

Parametrization

ι2 : (z, y) →
(

z, y,
√

y(C2 + 2H2(y))− 2C3

)

ω3|{I2=C2} = 0,

ω2|{I2=C2} = 0,

ω1|{I2=C2}
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Last iteration

Solution to ω1|{I2=C2} ≡ 0

I1 = z − H3(y;C2,C3), H3(y) =

∫
1√

y(C2 + 2H2(y))− 2C3

dy



24/32

General Solution

Implicit Solution

z − H3(y;C2,C3) = C1

Undoing the transformation z = x − ct, y(z) = u(x, t)

Traveling Wave

u(x, t) = F(x − ct − C1;C2,C3)

Explicit expressions

The functions H1,H2,H3 and F depend on the function a.
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Particular cases of the gKdV equation
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KdV equation: a(u) = 6u

u(x, t) =
c

2
sech2

(√
c

2
(−x + ct + C1)

)
for c > 0

u(x, t) =
c

2
sec2

(√
−c

2
(−x + ct + C1)

)
for c < 0
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Modified KdV: a(u) = u2

u(x, t) =
144c e

√
c(C1−x+ct)

e2
√

c(C1−x+ct) + 864c
for c > 0
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Generalized KdV: a(u) = un

n

u(x, t) =

(
cn(n + 1)(n + 2)

2 cosh2
(

n

2

√
c(C1 − x + ct)

)) 1

n

for c > 0

u(x, t) =

(
cn(n + 1)(n + 2)

2 cos2
(

n

2

√
c(C1 − x + ct)

)) 1

n

for c < 0
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Schamel--KdV: a(u) = α
√

u + βu

For c > 0:

u(x, t) =

(
900c e

1

2

√
c(C1−x+ct)

240α e
1

2

√
c(C1−x+ct) + e

√
c(C1−x+ct) + 67500βc + 14400α2

)2

For c < 0:

u(x, t) =
225c

2

(
8α

√
ξ sin

(√
−c(C1−x+ct)

2

)
+ 75βc − ξ cos2

(√
−c(C1−x+ct)

2

))
(

75βc − ξ cos2

(√
−c(C1−x+ct)

2

))2

where ξ = 16α2 + 75βc.
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Summary

Goal: Find travelling wave solutions of the gKdV equation

ut + uxxx + a(u)ux = 0,

Geometric method: Use of C∞-structures, a generalization of

solvable structures, to integrate the ODE derived from the

travelling wave reduction.

General idea: Flag of foliations.

Result: A unified and general method to derive explicit solutions for

a broad family of gKdV-type equations:

u(x, t) = F(x − ct − C1;C2,C3)

.
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Thanks for your attention!
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