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Beltrami equation with two characteristics

Let D be a domain in the complex plane C, i.e., a connected and

open subset of C, and let µ and ν : D→ C be a measurable

functions with |µ(z)|+ |ν(z)|< 1 a.e. (almost everywhere) in D.

We study the Beltrami equation with two characteristics

(1) fz = µ(z)fz+ν(z)fz a.e. in D,

where fz = (fx+ ify)/2, fz = (fx− ify)/2, z= x+ iy, fx and fy are

the partial derivatives of f by x and y, respectively. The functions µ

and ν are called the complex coe�cients and

(2) Kµ,ν(z) =
1+ |µ(z)|+ |ν(z)|
1−|µ(z)|− |ν(z)|

the dilatation quotient for the equation (1).

The Beltrami equation (1) is said to be degenerate if

esssupKµ,ν(z) = ∞.



Beltrami equation with two characteristics

Picking ν(z)≡ 0 in (1), we arrive at the standard Beltrami

equation of the form

(3) fz = µ(z)fz.

For the equation (3) we set

(4) Kµ(z) =
1+ |µ(z)|
1−|µ(z)|

.

The Beltrami equation (3) is said to be degenerate if

esssupKµ(z) = ∞.



Beltrami equation with two characteristics

Theorems on the existence of homeomorphic solutions of the

Sobolev class W1,1
loc have been recently proved by the method of

moduli for many linear and quasilinear degenerate Beltrami

equations; see, for example, 1, 2, 3, 4, 5, 6.
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Beltrami equation with two characteristics

Picking µ(z)≡ 0 in (1), we arrive at the Beltrami equation of the

second type

(5) fz = ν(z)fz.

For the equation (5) we set

(6) Kν(z) =
1+ |ν(z)|
1−|ν(z)|

.

This equation plays a great role in many problems of mathematical

physics, see e.g. 7.
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GFMV functions

For a point z0 ∈ C and r> 0, let us set

B(z0, r) = {z ∈ C : |z− z0|< r} .

We say that a function ϕ : C→ R has a global �nite mean value at

the point z0 ∈ C, abbr. ϕ ∈GFMV(z0), if

(7) limsup
R→∞

1

πR2

∫
B(z0,R)

|ϕ(z)|dxdy < ∞.

Here condition (7) includes the assumption that ϕ is locally

integrable in C.



GFMV functions

Proposition 1. If the function ϕ : C→ R has a global �nite mean

value at the point z0 ∈ C, then ϕ has a global �nite mean value at

every point ζ ∈ C.

We say that a function ϕ : C→ R has a global �nite mean value in

C, abbr. ϕ ∈GFMV(C), if ϕ ∈GFMV(z0) for some point z0 ∈ C.



GFMV functions

Proposition 2. Let z0 ∈ C, C> 0 and r0 > 0. If a nonnegative

function ϕ : C→ R satis�es the condition

1

2πR

∫
|z−z0|=R

ϕ(z)|dz|⩽ C

for a.a. R ∈ (r0,+∞), then ϕ has a global �nite mean value at the

point z0.

Corollary 1. Let z0 ∈ C, C> 0 and r0 > 0. If a nonnegative

function ϕ : C→ R satis�es the condition ϕ(z)⩽ C for a.a. z ∈ C,

then ϕ has a global �nite mean value at the point z0.



GFMV functions

Lemma 1. Let z0 ∈ C. If a nonnegative function ϕ : C→ R has a

global �nite mean value at z0, then for R> e

(8)

∫
A(z0,e,R)

ϕ(z)dxdy

|z− z0|2
⩽ C logR,

where C= πe2ϕ∞(z0) and

(9) ϕ∞(z0) = sup
R∈(e,+∞)

1

πR2

∫
B(z0,R)

ϕ(z)dxdy.



Asymptotic behavior at in�nity

Let z0 ∈ C and r> 0. For homeomorphism f : C→ C, we put

Lf(z0,r) = max
|z−z0|=r

|f(z)− f(z0)|, lf(z0,r) = min
|z−z0|=r

|f(z)− f(z0)|.
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Asymptotic behavior at in�nity

Theorem 1. Let µ and ν : C→ C be a measurable functions with

|µ(z)|+ |ν(z)|< 1 a.e. and f : C→ C be a homeomorphic W
1,1
loc

solution of the Beltrami equation (1), z0 ∈ C. Assume that

Kµ,ν ∈GFMV(C) and

(10) k∞ = k∞(z0) = sup
R∈(e,+∞)

1

πR2

∫
B(z0,R)

Kµ,ν(z)dxdy,

then

(11) liminf
R→∞

Lf(z0,R)

Rp
⩾ c lf(z0,e),

where p= 2
e2k∞

and c= e
− 4

e2k∞ .



Asymptotic behavior at in�nity

Picking ν(z)≡ 0 in Theorem 1, we arrive at the following

statement.

Corollary 2. Let µ : C→ C be a measurable function with

|µ(z)|< 1 a.e. and f : C→ C be a homeomorphic W
1,1
loc solution of

the Beltrami equation (3), z0 ∈ C. Assume that Kµ ∈GFMV(C)
and

(12) k∞ = sup
R∈(e,+∞)

1

πR2

∫
B(z0,R)

Kµ(z)dxdy,

then

(13) liminf
R→∞

Lf(z0,R)

Rp
⩾ c lf(z0,e),

where p= 2
e2k∞

and c= e
− 4

e2k∞ .



Asymptotic behavior at in�nity

Example. Consider the equation

(14) fz = µ(z)fz,

where

(15) µ(z) =

{
1−log |z|
1+log |z|

z
z
, |z|> e,

0, |z|⩽ e,

in the complex plane C. Hence,

(16) Kµ(z) =
1+ |µ(z)|
1−|µ(z)|

=

{
log |z|, |z|> e,

1, |z|⩽ e

and

(17) limsup
R→∞

1

πR2

∫
B(z0,R)

Kµ(z)dxdy = ∞, z0 = 0.

It follows that the function Kµ(z) does not have a global �nite

mean value at the point z0 = 0.



Asymptotic behavior at in�nity

The mapping

(18) f =

{
log |z|
|z| z, |z|> e,

e−1z, |z|⩽ e

is a solution of the equation (14).

On the other hand, we have Lf(z0,R) = max
|z|=R

|f(z)|= logR as

R⩾ e and

(19) lim
R→∞

max
|z|=R

|f(z)|

Rβ
= 0

for every β > 0.



Asymptotic behavior at in�nity

Letting µ(z)≡ 0 in Theorem 1, we derive the following statement.

Theorem 2. Let ν : C→ C be a measurable function with

|ν(z)|< 1 a.e. and f : C→ C be a homeomorphic W
1,1
loc solution of

the Beltrami equation (5), z0 ∈ C. Assume that Kν ∈GFMV(C)
and

(20) k∞ = sup
R∈(e,+∞)

1

πR2

∫
B(z0,R)

Kν(z)dxdy,

then

(21) liminf
R→∞

Lf(z0,R)

Rp
⩾ c lf(z0,e),

where p= 2
e2k∞

and c= e
− 4

e2k∞ .



Reduced Beltrami equation

Let λ : D→ C be a measurable function with |λ (z)|< 1 a.e. in D.

The equation of the form

(22) fz = λ (z)Refz

is called the reduced Beltrami equation, see 8, 9, 10, 11, 12.
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Reduced Beltrami equation

Equation (22) can be rewritten as the equation (1) with

(23) µ(z) = ν(z) =
λ (z)

2

and then

(24) Kµ,ν(z) =Kλ (z) =
1+ |λ (z)|
1−|λ (z)|

.



Reduced Beltrami equation

Thus, the previous results give the following consequence for the

reduced Beltrami equations (22).

Corollary 3. Let λ : C→ C be a measurable function with

|λ (z)|< 1 a.e. and f : C→ C be a homeomorphic W
1,1
loc solution of

the reduced Beltrami equation (22), z0 ∈ C. Assume that

Kλ ∈GFMV(C) and

(25) k∞ = sup
R∈(e,+∞)

1

πR2

∫
B(z0,R)

Kλ (z)dxdy,

then

(26) liminf
R→∞

Lf(z0,R)

Rp
⩾ c lf(z0,e),

where p= 2
e2k∞

and c= e
− 4

e2k∞ .



Non-existence theorems

We �nd su�cient conditions under which the Beltrami equation

with two characteristics has no homeomorphic solutions in the

Sobolev class W1,1
loc with the given asymptotic conditions.

Theorem 3. Let µ and ν : C→ C be a measurable functions with

|µ(z)|+ |ν(z)|< 1 a.e., z0 ∈ C. If Kµ,ν ∈GFMV(C), then there

are no homeomorphic solutions f : C→ C of the equation (1) from

Sobolev class W
1,1
loc satisfying the asymptotic condition

(27) liminf
R→∞

Lf(z0,R)

Rp
= 0,

where p= 2
e2k∞

and k∞ = sup
R∈(e,+∞)

1
πR2

∫
B(z0,R)

Kµ,ν(z)dxdy.



Non-existence theorems

Picking in Theorem 3 ν(z)≡ 0, we get

Corollary 4. Let µ : C→ C be a measurable function with

|µ(z)|< 1 a.e., z0 ∈ C. If Kµ ∈GFMV(C), then there are no

homeomorphic solutions f : C→ C of the equation (3) from

Sobolev class W
1,1
loc satisfying the asymptotic condition

(28) liminf
R→∞

Lf(z0,R)

Rp
= 0,

where p= 2
e2k∞

and k∞ = sup
R∈(e,+∞)

1
πR2

∫
B(z0,R)

Kµ(z)dxdy.



Non-existence theorems

Letting µ(z)≡ 0 in Theorem 3 gives

Corollary 5. Let ν : C→ C be a measurable function with

|ν(z)|< 1 a.e., z0 ∈ C. If Kν ∈GFMV(C), then there are no

homeomorphic solutions f : C→ C of the equation (5) from

Sobolev class W
1,1
loc satisfying the asymptotic condition

(29) liminf
R→∞

Lf(z0,R)

Rp
= 0,

where p= 2
e2k∞

and k∞ = sup
R∈(e,+∞)

1
πR2

∫
B(z0,R)

Kν(z)dxdy.



Non-existence theorems

Now choosing µ(z) = ν(z) = λ (z)
2

in Theorem 3 provides

Corollary 6. Let λ : C→ C be a measurable function with

|λ (z)|< 1 a.e., z0 ∈ C. If Kλ ∈GFMV(C), then there are no

homeomorphic solutions f : C→ C of the equation (22) from

Sobolev class W
1,1
loc satisfying the asymptotic condition

(30) liminf
R→∞

Lf(z0,R)

Rp
= 0,

where p= 2
e2k∞

and k∞ = sup
R∈(e,+∞)

1
πR2

∫
B(z0,R)

Kλ (z)dxdy.


