On the asymptotic behavior at infinity of solutions of the Beltrami equation with two characteristics

Mariia Stefanchuk

Institute of Mathematics of the National Academy of Sciences of Ukraine

Joint work with Igor Petkov and Ruslan Salimov

Beltrami equation with two characteristics

Let D be a domain in the complex plane \mathbb{C} , i.e., a connected and open subset of \mathbb{C} , and let μ and $\nu \colon D \to \mathbb{C}$ be a measurable functions with $|\mu(z)| + |\nu(z)| < 1$ a.e. (almost everywhere) in D. We study the *Beltrami equation with two characteristics*

(1)
$$f_{\overline{z}} = \mu(z)f_z + \nu(z)\overline{f_z}$$
 a.e. in D,

where $f_{\overline{z}} = (f_x + if_y)/2$, $f_z = (f_x - if_y)/2$, z = x + iy, f_x and f_y are the partial derivatives of f by x and y, respectively. The functions μ and ν are called the *complex coefficients* and

(2)
$$K_{\mu,\nu}(z) = \frac{1+|\mu(z)|+|\nu(z)|}{1-|\mu(z)|-|\nu(z)|}$$

the dilatation quotient for the equation (1). The Beltrami equation (1) is said to be degenerate if $\operatorname{ess\,sup} K_{\mu,\nu}(z) = \infty$. Picking $\mathbf{v}(z) \equiv 0$ in (1), we arrive at the standard *Beltrami* equation of the form

(3)
$$f_{\overline{z}} = \boldsymbol{\mu}(z) f_{z}.$$

For the equation (3) we set

(4)
$$K_{\mu}(z) = \frac{1 + |\mu(z)|}{1 - |\mu(z)|}.$$

The Beltrami equation (3) is said to be *degenerate* if $\operatorname{ess\,sup} K_{\mu}(z) = \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Beltrami equation with two characteristics

Theorems on the existence of homeomorphic solutions of the Sobolev class $W_{loc}^{1,1}$ have been recently proved by the method of moduli for many linear and quasilinear degenerate Beltrami equations; see, for example, ¹, ², ³, ⁴, ⁵, ⁶.

¹Astala, K., Iwaniec, T., Martin, G.J. (2009). *Elliptic Differential Equations and Quasiconformal Mappings in the Plane*. Princeton Mathematical Series, **48**, Princeton University Press, Princeton.

²Sevost'yanov, E. (2023). *Mappings with Direct and Inverse Poletsky Inequalities*. Developments in Mathematics, **78**. Springer, Cham.

³Gut|yanskii, V., Ryazanov, V., Srebro, U., Yakubov, E. (2012). *The Beltrami equations: A geometric approach. Developments in Math., 26.* Springer, New York.

⁴Martio, O., Ryazanov, V., Srebro, U., Yakubov, E. (2009). *Moduli in modern mapping theory. Springer Monographs in Mathematics*. Springer, New York.

⁵Dovhopiatyi, O., Sevost'yanov, E. (2022). On the existence of solutions of quasilinear Beltrami equations with two characteristics. *Ukrainian Mathematical Journal*, *74*(7), 1099–1112.

⁶Ryazanov, V., Salimov, R., Sevost'yanov, E. (2023). On Hölder Continuity of Solutions to the Beltrami Equations. *Ukr. Math.* J., 75(4), 1099–1112.

Picking $\mu(z) \equiv 0$ in (1), we arrive at the Beltrami equation of the second type

(5)
$$f_{\overline{z}} = v(z)\overline{f_z}.$$

For the equation (5) we set

(6)
$$K_{\mathbf{v}}(z) = \frac{1+|\mathbf{v}(z)|}{1-|\mathbf{v}(z)|}.$$

This equation plays a great role in many problems of mathematical physics, see e.g. 7 .

200

⁷S.L. Krushkal' and R. Kühnau, *Quasiconformal mappings, new methods and applications.* Nauka, Novosibirsk, 1984 [in Russian]; *Quasikonfoeme Abbildungen-neue Methoden und Anwendungen.* Teubner-Text zur Mathematik, **54**, BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1983 [in German].

For a point $z_0 \in \mathbb{C}$ and r > 0, let us set

$$B(z_0,r) = \left\{z \in \mathbb{C} : |z-z_0| < r\right\}.$$

We say that a function $\varphi \colon \mathbb{C} \to \mathbb{R}$ has a *global finite mean value* at the point $z_0 \in \mathbb{C}$, abbr. $\varphi \in GFMV(z_0)$, if

《曰》 《聞》 《臣》 《臣》 三臣

(7)
$$\limsup_{\mathbf{R}\to\infty}\frac{1}{\pi\mathbf{R}^2}\int_{\mathbf{B}(\mathbf{z}_0,\mathbf{R})}|\boldsymbol{\varphi}(\mathbf{z})|\,\mathrm{d}\mathbf{x}\mathrm{d}\mathbf{y}<\infty.$$

Here condition (7) includes the assumption that φ is locally integrable in \mathbb{C} .

Proposition 1. If the function $\varphi \colon \mathbb{C} \to \mathbb{R}$ has a global finite mean value at the point $z_0 \in \mathbb{C}$, then φ has a global finite mean value at every point $\zeta \in \mathbb{C}$.

We say that a function $\varphi \colon \mathbb{C} \to \mathbb{R}$ has a *global finite mean value* in \mathbb{C} , abbr. $\varphi \in \operatorname{GFMV}(\mathbb{C})$, if $\varphi \in \operatorname{GFMV}(z_0)$ for some point $z_0 \in \mathbb{C}$.

Proposition 2. Let $z_0 \in \mathbb{C}$, C > 0 and $r_0 > 0$. If a nonnegative function $\varphi \colon \mathbb{C} \to \mathbb{R}$ satisfies the condition

$$\frac{1}{2\pi R} \int\limits_{|z-z_0|=R} \phi(z) |dz| \leqslant C$$

for a.a. $R\in(r_0,+\infty),$ then ϕ has a global finite mean value at the point $z_0.$

Corollary 1. Let $z_0 \in \mathbb{C}$, C > 0 and $r_0 > 0$. If a nonnegative function $\varphi \colon \mathbb{C} \to \mathbb{R}$ satisfies the condition $\varphi(z) \leqslant C$ for a.a. $z \in \mathbb{C}$, then φ has a global finite mean value at the point z_0 .

Lemma 1. Let $z_0 \in \mathbb{C}$. If a nonnegative function $\varphi \colon \mathbb{C} \to \mathbb{R}$ has a global finite mean value at z_0 , then for R > e

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

(8)
$$\int_{\mathbb{A}(z_0,e,R)} \frac{\varphi(z) \, dx dy}{|z-z_0|^2} \leqslant C \log R,$$

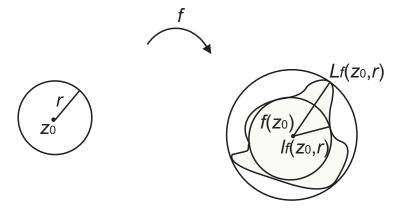
where $\mathrm{C}=\pmb{\pi}\mathrm{e}^{2}\pmb{\phi}_{\!\!\infty}(\mathrm{z}_{0})$ and

(9)
$$\boldsymbol{\varphi}_{\infty}(\mathbf{z}_0) = \sup_{\mathbf{R}\in(\mathbf{e},+\infty)} \frac{1}{\pi \mathbf{R}^2} \int_{\mathbf{B}(\mathbf{z}_0,\mathbf{R})} \boldsymbol{\varphi}(\mathbf{z}) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y}.$$

Asymptotic behavior at infinity

Let $z_0\in\mathbb{C}$ and r>0. For homeomorphism $f:\mathbb{C}\to\mathbb{C},$ we put

$$L_{f}(z_{0},r) = \max_{|z-z_{0}|=r} |f(z) - f(z_{0})|, \quad l_{f}(z_{0},r) = \min_{|z-z_{0}|=r} |f(z) - f(z_{0})|.$$



Theorem 1. Let μ and $v \colon \mathbb{C} \to \mathbb{C}$ be a measurable functions with $|\mu(z)| + |v(z)| < 1$ a.e. and $f \colon \mathbb{C} \to \mathbb{C}$ be a homeomorphic $W_{loc}^{1,1}$ solution of the Beltrami equation (1), $z_0 \in \mathbb{C}$. Assume that $K_{\mu,\nu} \in GFMV(\mathbb{C})$ and

(10)
$$k_{\infty} = k_{\infty}(z_0) = \sup_{\mathbf{R} \in (\mathbf{e}, +\infty)} \frac{1}{\pi \mathbf{R}^2} \int_{\mathbf{B}(z_0, \mathbf{R})} \mathbf{K}_{\mu, \nu}(z) \, \mathrm{d}x \, \mathrm{d}y,$$

.

then

(11)
$$\liminf_{R\to\infty} \frac{L_f(z_0,R)}{R^p} \ge c l_f(z_0,e),$$

where
$$p=\frac{2}{e^2k_{\infty}}$$
 and $c=e^{-\frac{4}{e^2k_{\infty}}}$

Asymptotic behavior at infinity

Picking $\nu(z)\equiv 0$ in Theorem 1, we arrive at the following statement.

Corollary 2. Let $\mu : \mathbb{C} \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. and $f : \mathbb{C} \to \mathbb{C}$ be a homeomorphic $W_{loc}^{1,1}$ solution of the Beltrami equation (3), $z_0 \in \mathbb{C}$. Assume that $K_{\mu} \in \mathrm{GFMV}(\mathbb{C})$ and

(12)
$$k_{\infty} = \sup_{\mathbf{R} \in (\mathbf{e}, +\infty)} \frac{1}{\pi \mathbf{R}^2} \int_{\mathbf{B}(\mathbf{z}_0, \mathbf{R})} \mathbf{K}_{\mu}(\mathbf{z}) \, \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y},$$

then

(13)
$$\liminf_{R\to\infty} \frac{L_f(z_0,R)}{R^p} \ge c l_f(z_0,e),$$

where
$$p=\frac{2}{e^2k_{\infty}}$$
 and $c=e^{-\frac{4}{e^2k_{\infty}}}$

Asymptotic behavior at infinity

Example. Consider the equation

(14)
$$f_{\overline{z}} = \mu(z)f_z,$$

where

(15)
$$\mu(z) = \begin{cases} \frac{1 - \log |z|}{1 + \log |z|} \frac{z}{z}, \ |z| > e, \\ 0, \ |z| \leqslant e, \end{cases}$$

in the complex plane $\mathbb C.$ Hence,

(16)
$$K_{\mu}(z) = \frac{1 + |\mu(z)|}{1 - |\mu(z)|} = \begin{cases} \log |z|, \ |z| > e, \\ 1, \ |z| \leqslant e \end{cases}$$

and

(17)
$$\limsup_{R\to\infty} \frac{1}{\pi R^2} \int_{B(z_0,R)} K_{\mu}(z) \, dx dy = \infty, \quad z_0 = 0.$$

It follows that the function $K_{\mu}(z)$ does not have a global finite mean value at the point $z_0 = 0$.

The mapping

(18)
$$f = \begin{cases} \frac{\log |z|}{|z|} z, \ |z| > e, \\ e^{-1}z, \ |z| \leqslant e \end{cases}$$

is a solution of the equation (14). On the other hand, we have $L_f(z_0,R)=\max_{|z|=R}|f(z)|=\log R$ as $R\geqslant e$ and

<ロト <四ト <注入 <注下 <注下 <

(19)
$$\lim_{\mathbf{R}\to\infty}\frac{\max_{|z|=\mathbf{R}}|\mathbf{f}(z)|}{\mathbf{R}^{\beta}}=0$$

for every $\beta > 0$.

Letting $\mu(z) \equiv 0$ in Theorem 1, we derive the following statement.

Theorem 2. Let $v \colon \mathbb{C} \to \mathbb{C}$ be a measurable function with |v(z)| < 1 a.e. and $f \colon \mathbb{C} \to \mathbb{C}$ be a homeomorphic $W^{1,1}_{loc}$ solution of the Beltrami equation (5), $z_0 \in \mathbb{C}$. Assume that $K_v \in \mathrm{GFMV}(\mathbb{C})$ and

▲口▶ ▲圖▶ ▲理▶ ▲理▶ 三里……

(20)
$$k_{\infty} = \sup_{\mathbf{R} \in (\mathbf{e}, +\infty)} \frac{1}{\pi \mathbf{R}^2} \int_{\mathbf{B}(\mathbf{z}_0, \mathbf{R})} \mathbf{K}_{\boldsymbol{\nu}}(\mathbf{z}) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y},$$

then

(21)
$$\liminf_{R\to\infty} \frac{L_f(z_0,R)}{R^p} \ge c l_f(z_0,e),$$

where $p = \frac{2}{e^2 k_{\infty}}$ and $c = e^{-\frac{4}{e^2 k_{\infty}}}$.

Reduced Beltrami equation

Let $\lambda: D \to \mathbb{C}$ be a measurable function with $|\lambda(z)| < 1$ a.e. in D. The equation of the form

(22)
$$f_{\overline{z}} = \lambda(z) \operatorname{Ref}_{z}$$

is called the *reduced Beltrami equation*, see ⁸, ⁹, ¹⁰, ¹¹, ¹².

⁸K. Astala, T. Iwaniec, and G. J. Martin, *Elliptic Differential Equations and Quasiconformal Mappings in the Plane*. Princeton Mathematical Series, **48**, Princeton University Press, Princeton, 2009.

⁹B. Bojarski, "Generalized solutions of a system of differential equations of the first order of the elliptic type with discontinuous coefficients,"*Mat. Sb.*, **43(85)**(4), 451–503 (1957) [in Russian].

¹⁰B. Bojarski, *Generalized Solutions of a System of Differential Equations of the First Order of Elliptic Type with Discontinuous Coefficients*. University Printing House, Jyväskylä, 2009.

¹¹B. Bojarski, "Primary solutions of general Beltrami equations,"*Ann. Acad. Sci. Fenn. Math.*, **32**(2), 549–557 (2007).

¹²L. I. Volkovyskii, *Quasiconformal Mappings*. L'vov University Press, L'vov, 1954 [in Russian].

500

Equation (22) can be rewritten as the equation (1) with

(23)
$$\mu(z) = \nu(z) = \frac{\lambda(z)}{2}$$

and then

(24)
$$\mathbf{K}_{\mu,\nu}(z) = \mathbf{K}_{\lambda}(z) = \frac{1+|\lambda(z)|}{1-|\lambda(z)|}.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Reduced Beltrami equation

Thus, the previous results give the following consequence for the reduced Beltrami equations (22).

Corollary 3. Let $\lambda : \mathbb{C} \to \mathbb{C}$ be a measurable function with $|\lambda(z)| < 1$ a.e. and $f : \mathbb{C} \to \mathbb{C}$ be a homeomorphic $W_{loc}^{1,1}$ solution of the reduced Beltrami equation (22), $z_0 \in \mathbb{C}$. Assume that $K_{\lambda} \in GFMV(\mathbb{C})$ and

(25)
$$k_{\infty} = \sup_{\mathbf{R} \in (\mathbf{e}, +\infty)} \frac{1}{\pi \mathbf{R}^2} \int_{\mathbf{B}(\mathbf{z}_0, \mathbf{R})} \mathbf{K}_{\lambda}(\mathbf{z}) \, d\mathbf{x} d\mathbf{y},$$

then

(26)
$$\liminf_{R\to\infty} \frac{L_f(z_0,R)}{R^p} \geqslant c \, l_f(z_0,e),$$

where
$$p=\frac{2}{e^2k_{\infty}}$$
 and $c=e^{-\frac{4}{e^2k_{\infty}}}$

We find sufficient conditions under which the Beltrami equation with two characteristics has no homeomorphic solutions in the Sobolev class $W_{loc}^{1,1}$ with the given asymptotic conditions.

Theorem 3. Let μ and $\nu : \mathbb{C} \to \mathbb{C}$ be a measurable functions with $|\mu(z)| + |\nu(z)| < 1$ a.e., $z_0 \in \mathbb{C}$. If $K_{\mu,\nu} \in \mathrm{GFMV}(\mathbb{C})$, then there are no homeomorphic solutions $f : \mathbb{C} \to \mathbb{C}$ of the equation (1) from Sobolev class $W_{loc}^{1,1}$ satisfying the asymptotic condition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(27)
$$\liminf_{\mathbf{R}\to\infty}\frac{\mathbf{L}_{\mathbf{f}}(\mathbf{z}_0,\mathbf{R})}{\mathbf{R}^{\mathbf{p}}}=0,$$

where
$$p=\frac{2}{e^2k_{\infty}}$$
 and $k_{\infty}=\underset{R\in(e,+\infty)}{\text{sup}}\frac{1}{\pi R^2}\underset{B(z_0,R)}{\int}K_{\mu,\nu}(z)\,dxdy.$

Picking in Theorem 3 $v(z) \equiv 0$, we get

Corollary 4. Let $\mu : \mathbb{C} \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e., $z_0 \in \mathbb{C}$. If $K_\mu \in GFMV(\mathbb{C})$, then there are no homeomorphic solutions $f : \mathbb{C} \to \mathbb{C}$ of the equation (3) from Sobolev class $W_{loc}^{1,1}$ satisfying the asymptotic condition

(28)
$$\liminf_{\mathbf{R}\to\infty}\frac{\mathbf{L}_{\mathbf{f}}(\mathbf{z}_{0},\mathbf{R})}{\mathbf{R}^{\mathbf{p}}}=0,$$

where
$$p = \frac{2}{e^2 k_{\infty}}$$
 and $k_{\infty} = \sup_{R \in (e, +\infty)} \frac{1}{\pi R^2} \int_{B(z_0, R)} K_{\mu}(z) dx dy.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ◆○◆

Letting $\mu(z) \equiv 0$ in Theorem 3 gives

Corollary 5. Let $v: \mathbb{C} \to \mathbb{C}$ be a measurable function with |v(z)| < 1 a.e., $z_0 \in \mathbb{C}$. If $K_v \in GFMV(\mathbb{C})$, then there are no homeomorphic solutions $f: \mathbb{C} \to \mathbb{C}$ of the equation (5) from Sobolev class $W_{loc}^{1,1}$ satisfying the asymptotic condition

(29)
$$\liminf_{R\to\infty}\frac{L_f(z_0,R)}{R^p}=0,$$

where
$$p = \frac{2}{e^2 k_{\infty}}$$
 and $k_{\infty} = \sup_{R \in (e, +\infty)} \frac{1}{\pi R^2} \int_{B(z_0, R)} K_{\nu}(z) dx dy$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Now choosing $\mu(z) = \nu(z) = \frac{\lambda(z)}{2}$ in Theorem 3 provides **Corollary 6.** Let $\lambda : \mathbb{C} \to \mathbb{C}$ be a measurable function with $|\lambda(z)| < 1$ a.e., $z_0 \in \mathbb{C}$. If $K_\lambda \in GFMV(\mathbb{C})$, then there are no homeomorphic solutions $f : \mathbb{C} \to \mathbb{C}$ of the equation (22) from Sobolev class $W_{loc}^{1,1}$ satisfying the asymptotic condition

(30)
$$\liminf_{\mathbf{R}\to\infty}\frac{\mathbf{L}_{\mathbf{f}}(\mathbf{z}_0,\mathbf{R})}{\mathbf{R}^{\mathbf{p}}}=0,$$

where $p=\frac{2}{e^2k_{\infty}}$ and $k_{\infty}=\underset{R\in(e,+\infty)}{\text{sup}}\frac{1}{\pi R^2}\underset{B(z_0,R)}{\int}K_{\lambda}(z)\,dxdy.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで