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1. On the generalisations of the geometries of Chevalley groups. 

 

The incidence system is the triple (Γ, I, t) where I is a symmetric 

antireflexive  relation (simple graph) on the vertex set Γ, t : Γ→N is a 

type function onto the set of types N such that αIβ and t(α) = t(β) implies 

α = β.  

 



An important example of the incidence system as above  is the so-

called  group incidence system Γ(G, Gs), s ϵS. Here G is the abstract 

group and Gs, s ϵS is the family of distinct subgroups of G.  

The elements of Γ(G, Gs), s ϵS are the left cosets of  Gs,  in G for 

all possible s ϵ S. Cosets α and β are incident precisely when 

 |α ∩ β| ≠ 0.  The type function is defined by t(α )=s where α = 

gGs for some s ϵS. 

Let (W, S) be Coxeter system, i.e. W is a group  with a set of 

distinguished generators given by S={s1, s2, … , sl} and generic relation 

(sisj)m(i,j)=e. Here M=(m(i,j)) is a symmetrical l times l matrix with 

m(i,i)=1 and off-diagonal entries satisfying m(i,j) ≥ 2.  

Let us take  Wi =<S-{si }>, 1 ≤ i ≤ l and consider a group incidence 

system Γ(W)=Γ(W, Wi ), 1≤ i ≤ l. This geometry is called  Coxeter 

geometry of W. Then Wi are referred to as the  maximal standard 

subgroups  of W. 

Geometries of BN-pairs. 

Let G be a group, B and N subgroups of G, and S  be a collection of 

cosets of B ∩N in N. We call  

(G, B, N, S) Tits system  ( or we say that G has a BN-pair) if  

(i) G=<B, N> and B ∩ N is normal in N, 

(ii) S is a set of involutions which generate W=N/(B ∩ 

N),  

(iii) sBw is a subset in BuB ∩ BswB for any s ϵ S and w ϵ 

W,  

(iv) (iv)  sBs≠ B for all  s from  S. 

     

 Properties (1)-(iv) imply that (W, S) is a Coxeter system.  

Whenever  (G,B, N, S)  is Tits system we call the group W  by Weyl 

group of the system  or more usually Weyl group of G.  



The subgroups Pi  of G defined by BWiB are called the standard 

maximal parabolic subgroups of G.  

The group incidence system Γ(G) = Γ(G, Pi), {1≤ i ≤ l} is commonly 

referred to as  Lie geometry of G.  

    Kac – Moody group G is a group with BN pairs  defined via the 

pair (A, F) where A is generalised Cartan matrix and F is the field.  

Recall that A is a square matrix with diagonal entries 2 and negative 

integers in other entries. It defines Coxeter-Dynkin diagram Xl=Xl(A). 

(1) Definition of Kac-Moody Lie Algebra L(A, F). 

(2) Take inner automorphism  of L(A, F) and construct Kac 

Moody group G=G(A, F) with the Tits system (G, B, N, S). 

     Generalised Cartan matrix defines the Weyl group W(A) of the BN-

pair G. 

If W(A) is a finite irreducible Coxeter group then G is Chevalley 

group over the field F with associated with Coxeter - Dynkin diagram 

Xl. which belongs to the list An, n≥2,  Bn, n≥2,   Cn, n≥2,   Dn, n≥4, 

G2, F4, E6, E7, E8.   

Let us fix Kac-Moody group G(F)=Xl(F) with corresponding Weyl 

group  W.  

Let us consider the description of  the geometry Γ(G(F)) as algebraic 

variety in sense of Zariski topology. 

The following bipartite graphs are analogue of planar ternary rings 

introduced by M. Hall for the  description of Projective Planes.  

. 

Let K be a commutative ring with the unity.  

    Jordan-Gauss graph over K  is an  incidence structures  with 

partition sets P (points) and L (lines)  isomorphic to affine spaces V1  

and V2  over K such that the incidence relation is  given by special 

quadratic equations over the commutative ring K with unity such that 

the neighbour of each vertex is defined by the system of linear 

equation given in its row-echelon form.  



We assume that Vi, i=1,2  are finite dimensional spaces of kind Kn  or 

infinite dimensional affine spaces formed tuples with finite support. 

The formal description follows. 

Jordan-Gauss graph J(K) is the special case of linguistic graph of type 
(s, r) given by the following way.  

 We identify  points with tuples of kind (x)=(x1, x2,…, xn,…)ϵV1 and 

lines with tuples [y] =[y1, y2,…, yn,…] ϵV2. Brackets and parenthesis 
are convenient to distinguished type of the vertex of the graph. If (x) 

and [y] are incident (x)I[y] if and only if the following relations hold. 

  a1xs+1-b1yr+1=f1 (x1, x2 ,… , xs, y1, y2, …  , yr), 

a2xs+2-b2yr+2=f2 (x1, x2 ,… , xs ,    xs+1,  xs+1, y1, y2, …  , yr, yr+1), (1) 

  … 

 amxs+m-bmyr+m=fm(x1, x2 ,… ,xs, xs+1,…, xs+m-1, y1, y2, …  , yr, yr+1, 

…,yr+m-1)  

.... 

where  aj, and bj, j=1,2,…,m are not zero divisors, and fj are quadratic 
multivariate polynomials with coefficients from K.  

We assume that fj  are given in their standard form , i. e. the list of 

monomial terms ordered lexicographically. 
 

We say that two Jordan graphs J1(K) and J2(K’) are symbolically 

equivalent if they are given by the system of kind (1) with the same 
number of equations  over commutative rings K and K’ where 

quadratic polynomials fj  have the same list of monomial terms with 

nonzero coefficients. 

 

Let Г be an incidence system with partition sets Гi, i=1,2,..., m and 

incidence relation I. We say that partition of Г  into sets Jk, k=1, 2, ..., 

l is Jordan-Gauss equivalence over commutative ring K if  for incident 

elements α and β there is a Jordan - Gauss graph J(k(α), k(β))   over K  

with sets of points J(α)=Jk(α) and lines J(β)= Jk(β)  such that αϵJ(α), 

βϵJ(β) and α, β form an edge of Jl. 

Theorem 1. Let F be a field, G(F) be a Kac-Moody group and 

Г(G(F)) be a Kac -Moody  geometry of G(F).  Then there is Jordan-

Gauss partition of  Г(G(F)) defined over F. 



Let B+ and B- be Borel subgroups containing root subgroups 

corresponding positive and negative roots respectively. Let Pi , i=1, 

2,..., n are standard maximal parabolic subgroups, i. e maximal 

subgroups of G containing B+. 

Recall that the geometry Г(G(F)) is the disjoint union of (G(F):Pi) 

with the type function t(gPi)=i and incidence relation I : αIβ if and 

only if α∩β is not an  empty set. 

Proposition 1. Orbits of B-  form the classes of Jordan-Gauss 

equivalence relation. 

  Definition. Let Г= Г(G(F)) be the geometry of Kac-Moody group 

with the Coxeter-Dynkin diagram Xl. We take the partition of  Г onto 

the classes of Jordan-Gauss equivalence relation of Proposition 1. For 

each pair of classes Js,   Js’ which defines nontrivial induced graph 

J(s, s’) defined over F we select Jordan-Gauss graph  s,s’J(K)  over the 

commutative ring K with unity such that J(s, s’) and s,s’J(K) are 

symbolically equivalent. Let D be the data of our selection of graphs. 

The substitution of  s,s’J(K) instead of  J(s, s’) accordingly selected 

data D will produce incidence system DГ(Xl, K).  

We refer to it as Jordan-Gauss geometry with the diagram Xl  over 

commutative ring K  based on the  symbolic data D. 

As it follows from the definition there is a Jordan-Gauss equivalence 

on the set of elements of this incidence structure.  

The set of classes of this equivalence relations are in natural one to 

one correspondence R with the set of elements of Weyl geometry 

Γ(W), where W corresponds to Dynkin-Coxeter diagram Xl . 

 

2. Applications of Jordan-Gauss geometries in Algebraic Geometry. 

Let us consider an affine Cremona semigroup nCS(K) of all 

endomorphisms of multivariate ring K[x1, x2, ..., xn].  Endomorphism 

F can be given by its values F(x1)=f1, F(x2)=f2, ..., F(xn)=fn on the 

variables xi, i=1, 2,..., n. 



 We can assume that polynomials fi are given in their standard form 

i.e. sum of monomial terms ordered in lexicographical order. 

Endomorphism F induces the map F’ : x1→f1(x1, x2, ..., xn),  

x 2→f1(x1, x2, ..., xn),..., xn→fn(x1, x2, ..., xn) of the affine space K n  

into itself. 

 We define degree deg(F)  as maximal value of deg (fi). The density 

den fi(x1, x2, ..., xn) is its number of monomial terms 

. We define density den(F) of F as maximal value of den (fi), i=1, 2, 

..., n and identify endomorphism  F with the tuple (f1(x1, x2, ..., xn), 

f2(x1, x2, ..., xn), ,...., fn(x1, x2, ..., xn)). 

We use walks on incidence  structure DГ(Xl, K[x1, x2, ..., xn]) in the 

case of Xl =Al and natural colourings of their Jordan-Gauss graphs for 
the explicit constructions of groups supporting  the following 

statement of Computational Algebraic Geometry. 

Theorem 2. Let K be commutative ring with unity. For each positive 

integer n, d, d≥2 and  s≥0  there is a noncommutative subgroup H of 
affine Cremona semigroup nCS(K) of all endomorphisms of K[x1, 

x2,..., xn] such that maximal degree of representative of H is d and the 

densities  of elements from H are of size O(ns).  

 

Remark. There is a large subsemigroup H‘, H’>H of nCS(K) of 

prescribed degree d and density O(ns). 
   

H an H’ can serve as platforms of Noncommutative Cryptography for 

the implementation of postquantum secure protocols which are 
generalisations of Diffie – Hellman protocol. 

 

Note that the constructions of subgroups or subsemigroups of affine 
Cremona group of bounded degree is not an easy task because the 

product of two nonlinear elements of degree  t and s  in general 

position will have degree ts. 

 

      We assume that  multivariate map F of  Kn onto Kn is given in its 

standard form of kind xi →fi(x1, x2, … ,  xn), i=1, 2, … , n where 

polynomials fi are given in the form of the some of monomial terms 



listed in the lexicographical order. We assume that monomial term M 

is written in the form a(x1)t(1)(x2) t(2)…(xn)t(n), where t(i) are elements 
of Zm, m is the order of multiplicative group K*. 

 

      The trapdoor accelerator T  of F is a piece of information such the 

knowledge of T allows us to compute the reimage of F in polynomial 

time. We say that T is a computational accelerator of speed α if its 

knowledge allows to compute the reimage of F and its value on given 

element in time O(nα). 

Theorem 3. For each parameters n, d, d≥2  and α, α≤d  there is a 

bijective polynomial map F of Kn onto Kn of degree d, density of size 

O(nα) with the computational  accelerator of speed O(n). 

 

We say that  polynomial map F of Kn onto Kn has a multiplicative 

computational accelerator T of speed α if the restriction of F on (K*)n 

is the injective one  and the knowledge of T allows to compute the 

reimage of b ϵF((K*) n) and the image of pϵ(K*)n in time  O(nα).  

 

Theorem 4. For each parameters n,  and α, α≥0 there is a polynomial 
map F of Kn onto Kn  of the  density of size O(nα) with the 

multiplicative computational  accelerator of speed O(n). 

 
   Public keys based on this statement for α=3 were proposed in 2017 

Reports of Nath. Acad. Sci. of Ukraine (cases K=Zq and K=Fq). 

Other cryptographic applications  of maps of unbounded degree can 
be found in 

 

V. Ustimenko, On Eulerian semigroups of multivariate 

transformations and their cryptographic applications. 

European Journal of Mathematics 9, 93 (2023),  

https://doi.org/10.1007/s40879-023-00685 

 

APPENDIX. The constructions of polynomial maps. 

 

Let us consider the incidence system Г=  DГ(Xl, K’]).  Assume that Xl 

defines finite Weyl group W. We take one of the Jordan-Gauss graphs  

https://doi.org/10.1007/s40879-023-00685


J(K’) of Г with partition set Jk (points) and Jm (lines) such that  R(Jk) 

and R(Jm)  from Г(W) contain the Coxeter element g of Coxeter 
system (W, S). It means that g has the maximal length of its 

irreducible representations as the word of generators from S. 

 
Assume that Jk= (K’)n. We select K’ in a form of K[x1, x2,...., xn]. So 

points of J(K’) are tuples of kind  

 

(f1(x1, x2, ..., xn), f2(x1, x2,..., xn), ..., fn(x1, x2,..., xn)). 

 

We take the special point X=(x1, x2,…, xn) of J(K’) and 

consider the walk in DГ(Xl, K’]) of kind 

 
X, a1, a2,..., ...., al, al+1 where (X, a1) is an edge of J(K’), 

al ϵ Jm and al+1ϵJk. The destination point al+1 is the tuple  
(g1, g2,…, gn) where gi ϵK[x1, x2, …, xn]. 

 

We investigate transformations of Kn of kind 

 x1→g1(x1, x2, …, xn), 

x2→g2(x1, x2, …, xn), 

… 

 x1→g1(x1, x2, …, xn). 

 

Thus we can  

(1) consider the semigroup of such maps and its special 

subsemigroups 

(2) investigate when this  transformation is bijective 

and information on the walk defines trapdoor 

accelerator. 
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