On locally nilpotent Lie algebras of derivations of small rank

Kateryna Sysak

(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine) *E-mail:* sysakkya@gmail.com

Let \mathbb{K} be an arbitrary field of characteristic zero. Let A be an integral domain over \mathbb{K} and R the fraction field over A. Denote by $\operatorname{Der}_{\mathbb{K}}A$ and $\operatorname{Der}_{\mathbb{K}}R$ the Lie algebras of \mathbb{K} -derivations of A and R, respectively. Any derivation $D \in \operatorname{Der}_{\mathbb{K}}A$ can be uniquely extended to a derivation of R. If $r \in R$ and $D \in \operatorname{Der}_{\mathbb{K}}A$, then one can define a \mathbb{K} -derivation $rD \in \operatorname{Der}_{\mathbb{K}}R$ by setting $rD(x) = r \cdot D(x)$ for all $x \in R$. We denote by W(A) the subalgebra $R\operatorname{Der}_{\mathbb{K}}A = \mathbb{K}\langle rD \mid r \in R, D \in \operatorname{Der}_{\mathbb{K}}A \rangle$ of the Lie algebra $\operatorname{Der}_{\mathbb{K}}R$. For each subalgebra L of W(A), we define the rank $\operatorname{rk}_R L$ of L over R as the dimension of the vector space $RL = \mathbb{K}\langle rD \mid r \in R, D \in L \rangle$ over R.

The structure of nilpotent subalgebras of finite rank over R from W(A) was given in [2], [3], [4]. The results obtained there can be used to characterize locally nilpotent Lie algebras of derivations. A Lie algebra is called locally nilpotent if every its finitely generated subalgebra is nilpotent. As an example of such Lie algebras of derivations, one may consider the Lie algebras $u_n(\mathbb{K}), n \geq 1$, of triangular polynomial derivations (see, [1]).

Theorem 1. Let L be a nonzero locally nilpotent subalgebra of finite rank over R from the Lie algebra W(A). Let I be a proper ideal of L such that $I = RI \cap L$. Then the center Z(L/I) of the Lie algebra L/I is nontrivial.

In particular, we get the following result:

Corollary 2. If L is a nonzero locally nilpotent subalgebra of finite rank over R from the Lie algebra W(A), then the center Z(L) of L is nonzero.

Let L be a subalgebra of W(A). Then the field of constants F = F(L) for L consists of all $r \in R$ such that D(r) = 0 for all $D \in L$. In [2] it was proved that $FL = \mathbb{K}\langle fD | f \in F, D \in L \rangle$ is a Lie algebra over F. Moreover, if L is nilpotent and $\operatorname{rk}_R L < \infty$, then the Lie algebra FL is finite dimensional over F. In the case of a locally nilpotent L, FL is also locally nilpotent and the following theorem holds.

Theorem 3. Let L be a locally nilpotent subalgebra of the Lie algebra W(A). Let F be the field of constants for L. Then:

- (1) If $\operatorname{rk}_R L = 1$, then L is abelian and $\dim_F FL = 1$;
- (2) If $\operatorname{rk}_R L = 2$, then either FL is a nilpotent finite dimensional Lie algebra over F, or there exist $D_1, D_2 \in L$ and $a \in R$ such that

$$FL = F\langle D_2, D_1, aD_1, \dots, \frac{a^k}{k!}D_k, \dots \rangle,$$

where $[D_1, D_2] = 0$, $D_1(a) = 0$, $D_2(a) = 1$, and FL is infinite dimensional over F.

Rerefences

- Bavula V. V. Lie algebras of triangular derivations and an isomorphism criterion for their Lie factor algebras. Izv. RAN. Ser. Mat., 77: 3-44, 2013.
- [2] Makedonskyi Ie. O., Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations. Journal of Algebra, 401: 245-257, 2014.
- [3] Petravchuk A. P. On nilpotent Lie algebras of derivations of fraction fields. Algebra Discrete Math., 22: 116–128, 2016.
- [4] Sysak K. Ya. On nilpotent Lie algebras of derivations with large center. Algebra Discrete Math., 21: 153-162, 2016.