Information on the author
Yuri V. Teplinsky
- Anatolii Mykhailovych Samoilenko (on his 80th birthday)
- A. A. Boichuk, W. L. Kułyk, I. O. Parasyuk, M. O. Perestyuk, R. I. Petryshyn, G. P. Pelyukh, M. Rontó, O. M. Stanzhitskyi, Y. V. Teplinsky, V. I. Tkachenko, S. I. Trofimchuk, and S. M. Chuiko
- Volume 21, No.1, pp. 3-5
- Link PDF
- Of blessed memory of a prominent mathematician, Anatolii Mykhailovych Samoilenko (02.01.1938 – 04.12.2020)
- A. A. Boichuk, W. L. Kułyk, I. O. Lukovsky, V. L. Makarov, I. O. Parasyuk, G. P. Pelyukh, M. O. Perestyuk, R. I. Petryshyn, A. K. Prykarpatski, A. N. Ronto, M. Rontó, V. H. Samoilenko, O. M. Stanzhitskyi, Y. V. Teplinsky, O. M. Tymokha, V. I. Tkachenko, S. I. Trofimchuk, and S. M. Chuiko
- Volume 26, No.1, pp. 3-5
- Link PDF
- Oleksandr Andriyovych Boichuk (on his 65th birthday)
- A. M. Samoilenko, I. T. Kiguradze, I. O. Lukovsky, V. L. Makarov, M. O. Perestyuk, O. M. Sharkovsky, J. Diblík, V. F. Zhuravlev, M. Medveď, I. O. Parasyuk, N. H. Rozov, O. M. Stanzhitskyi, Y. V. Teplinsky, V. I. Tkachenko, and M. Fečkan
- Volume 18, No.2, pp. 147-148
- Link PDF
- About -smootness of an invariant torus of a countable system of difference equations defined on an -dimensional torus
- Y. V. Teplinsky and N. A. Marchuk
- Volume 5, No.2, pp. 251-265
- Link PDF
- On count-point boundary value problems for countable systems of ordinary differential equations
- Y. V. Teplinsky and V. A. Nedokis
- Volume 2, No.2, pp. 252-266
- Link PDF
- On existence of infinite-dimensional invariant tori for nonlinear countable systems of differential-difference equations
- A. M. Samoilenko, Y. V. Teplinsky, and K. V. Pasyuk
- Volume 13, No.2, pp. 253-271
- Link PDF
- On Frechet differentiability of invariant torus for nonlinear countable system of difference equations defined on an infinite-dimensional torus and containing deviations of the discrete argument
- Y. V. Teplinsky and N. A. Marchuk
- Volume 6, No.2, pp. 260-278
- Link PDF
- A construction of an infinite dimensional invariant torus for a countable system of linear differential-difference equations via the method of reduction in the angular variable
- A. M. Samoilenko, Y. V. Teplinsky, and K. V. Pasyuk
- Volume 14, No.2, pp. 267-280
- Link PDF
- Oleksandr Andriiovych Boichuk (on 60-th anniversary of his birthday)
- A. M. Samoilenko, M. O. Perestyuk, J. Diblík, M. Medveď, I. O. Parasyuk, R. I. Petryshyn, O. M. Stanzhitskyi, Y. V. Teplinsky, V. I. Tkachenko, M. Fečkan, and S. M. Chuiko
- Volume 13, No.2, pp. 287-288
- Link PDF
- On existence of invariant tori for countable systems of differential-difference equations defined on infinite-dimensional tori
- A. M. Samoilenko, Y. V. Teplinsky, and K. V. Pasyuk
- Volume 12, No.3, pp. 347-367
- Link PDF
- On existence of a smooth bounded semiinvariant manifold for a degenerate nonlinear system of difference equations in the space
- A. M. Samoilenko, Y. V. Teplinsky, and I. V. Semenyshyna
- Volume 6, No.3, pp. 378-400
- Link PDF
- Boundary-value problems for differential equations not solved with respect to the derivative, in the space of bounded number sequences
- A. M. Samoilenko, Y. V. Teplinsky, and V. A. Nedokis
- Volume 10, No.3, pp. 391-415
- Link PDF
- On finding periodic solutions of second order difference equations in a Banach spase
- Y. V. Teplinsky and I. V. Semenyshyna
- Volume 4, No.3, pp. 405-421
- Link PDF
- On periodic solutions of difference equations in infinite-dimensional spaces
- Y. V. Teplinsky and I. V. Semenyshyna
- Volume 3, No.3, pp. 414-430
- Link
- International scientific conference "Differential equations and their applications"
- A. M. Samoilenko, M. O. Perestyuk, V. H. Samoilenko, I. M. Konet, and Y. V. Teplinsky
- Volume 20, No.3, pp. 431-432
- Link PDF
- On a nonlinear boundary-value problem on the half-line for ordinary differential equations in the space of bounded number sequences with a countable set of boundary moments
- Y. V. Teplinsky and V. A. Nedokis
- Volume 6, No.4, pp. 530-549
- Link PDF
- On the invariant tori of quasilinear countable systems of differential equations defined on infinite-dimensional tori
- Y. V. Teplinsky
- Volume 23, No.4, pp. 553-564
- Link PDF