Gryshchuk Serhii Viktorovych

Gryshchuk Serhii Viktorovych



Publications

    Grishchuk S.V., Plaksa S.A. On construction of generalized axial-symmetric potentials by means components of hypercomplex analytic functions // Zb. Pr. Inst. Mat. NAN Ukr. (Transactions of the Institute of Mathematics of the National Academy of Sciences of Ukraine). – 2005. – 2, No. 3. – С. 67 – 83.

    Grishchuk S.V. About continuous continuation generalized of axial-symmetriс potentials to the boundary of the domain // Zb. Pr. Inst. Mat. NAN of Ukraine.– 2006. – 3, № 4. – С. 347 – 357 (Russian).

    Грищук С.В., Плакса С.А. Вирази розв’язків рівняння Ейлера – Пуассона – Дарбу через компоненти гіперкомплексних аналітичних функцій // Доповіді НАН України – 2006. – Сер. Мат. прир. техн. науки., № 8. – С. 18 – 24.

    Gryshchuk S.V., Plaksa S.A. Integral expressions of generalized axial-symmetric potentials // in: Boundary tasks for potential fields, Preprint No. 2007.2, Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2007), 32-59 (in Russian).


    Grishchuk S. V., Plaksa S. A. Integral representations of generalized axially symmetric potentials in a simply connected domain // Ukrainian Mathematical Journal. - 2009, Vol. 61, No. 2, pp. 195–213
    ; Translated from: Ukrains’kyi Matematychnyi Zhurnal. – 2009. – Vol. 61, No. 2, pp. 160–177.


    Grishchuk S. V., Plaksa S. A. Monogenic functions in a biharmonic algebra // 2009. - Ukr. Math. J. - Vol. 61, No. 12, pp 1865–1876
    (https://doi.org/10.1007/s11253-010-0319-5); Translated from Ukrains’kyi Matematychnyi Zhurnal. – 2009. – Vol. 61, No. 12, pp. 1587–1596.

    Gryshchuk S.V., Plaksa S.A. Monogenic functions in a biharmonic plane // Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky. – 2009. – No.12. – 13-20 (in Russian);
    Cited in databases: zbMATH (Zbl 1199.31005).

    Gryshchuk S.V., Plaksa S.A. On logarithmic residue of monogenic functions of biharmonic variable // Zb. Pr. Inst. Mat. NAN Ukr. - 2010.- Vol. 7, No. 2 2010, 227-234 (in Russian). Cited in databases: zbMATH (Zbl 1240.31004).

    Plaksa S.A., Gryshchuk S.V., Shpakivskyi V.S. Algebras of monogenic functions associated with classic equations of mathematical physic // in: "Complex Analysis and Dynamical Systems IV'', Contemporary Mathematics. – 2011. – Vol. 553, Amer. Math. Soc., Providence, RI. – P. 245 – 258.

    Gryshchuk S., Lanza de Cristoforis M. Singular Perturbation of Simple Steklov Eigenvalues // Numerical analysis and applied mathematics. International conference of numerical analysis and applied mathematics (ICNAAM 2012), Kos, Greece, 19-25th of September 2012, AIP Conference Proceedings vol. 1479, American Institute of Physics, Melville, NY. – 2012. – P. 700 –703.

    Gryshchuk S., Lanza de Cristoforis M. Asymptotic behaviour of the energy integral of simple eigenfunctions for the Steklov problem in a domain with a small hole. A functional analytic approach // Zb. Pr. Inst. Mat. NAN Ukr. – 2012. – Vol. 9, № 2. – P. 113 – 121.
    Cited in databases: zbMATH (Zbl 1289.47115)

    Gryshchuk S.V., Plaksa S.A. Biharmonic Schwartz integral for a half-plane // in: PROGRESS IN ANALYSIS: Proc. of the 8th Congress of the International Society for Analysis, its Applications, and Computation (ISAAC), Moscow, Russia, 22 – 27 August 2011, Conference Proceedings vol. 1, People's Friendship University of Russia, Moscow. – 2012. – P. 93 – 99.


    Gryshchuk S.V., Plaksa S.A. Schwartz-type integrals in a biharmonic plane // International Journal of Pure and Applied Mathematics. – 83, No.1. – 2013.– pp. 193–211.


    Gryshchuk S.V., Plaksa S.A. Basic Properties of Monogenic Functions in a Biharmonic Plane // in: ``Complex Analysis and Dynamical Systems V'', Contemporary Mathematics, Vol. 591, Amer. Math. Soc., Providence, RI. – 2013. – P. 127 – 134.


    Gryshchuk S., Rogosin S. Effective Conductivity of 2D Disk - Ring Composite Material // Mathematical Modelling and Analysis. – Vol. 18, Issue 3. – 2013. – P. 386 – 394.


    Грищук С.В. Степенные ряды в краевой задаче для моногенных функций бигармонической переменной в круге // Zb. Pr. Inst. Mat. NAN Ukr. – 2013. – 10, No. 4-5. – 2013. – С. 432 – 441.

    Gryshchuk S. Power series and conformal mappings in one boundary value problem for monogenic functions of the biharmonic variable // Zb. Pr. Inst. Mat. NAN Ukr. – 2014. – 11, № 1. – 2014. – С. 93 - 107.Cited in databases: zbMATH (Zbl Zbl 1313.30159).

    Gryshchuk S. and Lanza de Cristoforis M. Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach // Mathematical Methods in the Applied Sciences. – 2014. – Vol. 37, Issue 12. – pp. 1755 – 1771.

    Грищук С.В. Гіперкомплексна форма розв'язків рівнянь рівноваги Ляме // Матеріали XIIІ Міжнародної науково-практичної конференції студентів, аспірантів та молодих вчених «Шевченківська весна 2015: Математика та Механіка. Прикладна математика та комп'ютерні науки» (Київ, Україна), 1-3 квітня 2015 року. – Київський національний університет імені Тараса Шевченка: Київ. – 2015. – C. 4-8.

    Грищук С.В. Гiперкомплекснi моногеннi функцiї бiгармонiчної змiнної в деяких задачах плоскої теорiї пружностi // Доповіді НАН України. – 2015. – №6. – C. 7-12.

    Gryshchuk S.V. Effective Conductivity of Ellipse-Elliptical Ring Composite // Зб. праць Ін-ту математики НАН України. – 2015. – Т.12, №3. – С. 121-132.

    Gryshchuk S. V. $\mathbb{B}$-valued monogenic functions and their applications to boundary value problems in displacements
    of 2-D Elasticity //ArXiv preprint /arXiv:1601.01626v1 [math.AP]/, Analysis of PDEs = math.AP [math.CV],(2016), 12~pages.
    *.

    Gryshchuk S. V. $\mathbb{B}$-valued monogenic functions and their applications to boundary value problems in displacements of 2-D Elasticity, in: ``Analytic Methods of Analysis and Differential Equations: AMADE 2015'', S. V. Rogosin and M. V. Dubatovskaya, Belarusian State University, Minsk, Belarus (Eds.), Cambridge Scientic Publishers Ltd, 45 Margett Street, Cottenham, Cambridge CB24 8QY, UK, 2016, ISBN (paperback) 978-1-908106-56-8, pp. 37 - 47.

    S.V. Gryshchuk, S.A. Plaksa, Monogenic functions in the biharmonic boundary value problem // Mathematical Methods in the Applied Sciences. – 2016. – Vol.39, No. 11. – 2939–2952 (DOI: 10.1002/mma.3741).

    Serhii V. Gryshchuk, Sergiy A. Plaksa, Reduction of a Schwartz-type boundary value problem for biharmonic monogenic functions to Fredholm integral equations // Open Math. – 2017. – 15, No. 1. – pp. 374-381.

    Gryshchuk S. V. One-dimensionality of the kernel of the system of Fredholm integral equations for a homogeneous biharmonic problem // Zb. Pr. Inst. Mat. NAN Ukr. - 2017. - 14, No. 1, 128-139 (Ukrainian. English summary).

    Klishchuk B. A., Osipchuk T. M., Tkachuk M. V., Gryshchuk S. V., Bakhtin O. K. Zelins’kyĭ Yuriĭ Borysovych: on the occasion of his 70th birthday // Zb. Pr. Inst. Mat. NAN Ukr. – 2017. – 14, No. 1, 9-24 (Ukrainian).

    S. V. Gryshchuk, S. A. Plaksa, A Schwartz-Type Boundary Value Problem in a Biharmonic Plane // Lobachevskii Journal of Mathematics. - 2017. - Vol. 38, No.3. - pp. 435-442.

    Gryshchuk S. V. Monogenic functions in two dimensional commutative algebras to equations of plane orthotropy // Proceedings of the Institute of Applied Mathematics and Mechanics of NAS of Ukraine. - 2018. - Vol. 32. - Slovyansk: “TexPrintCentre”. - pp. 18--29.


    Gryshchuk S. V. Сommutative сomplex algebras of the second rank with unity and some cases of plane orthotropy. I // Ukr. Mat. Zh. - 2019. - 70, № 8. - pp. 1058-1071.



    Gryshchuk S. V. Commutative сomplex algebras of the second rank with unity and some cases of the plane orthotropy. II // Ukr. Mat. Zh. - 2019. - 70, № 10. - pp. 1594–1603.



    Gryshchuk S. V. On some cases of plane orthotropy // Bulletin de la Société des Sciences et des Lettres de Łódź, Ser. Recherches sur les déformations.– 2018.– LXVIII, No. 2. – pp. 71-76.


    Gryshchuk S.V. $\mathbb{B}_{0}$-valued monogenic functions to the theory of plane anisotropy // $\textit{ArXiv preprint}$ / arXiv:1901.05882v1 [math.AP] / (2019), 11 pages.

    Gryshchuk S. V., Plaksa S. A. (2019) Schwartz-Type Boundary Value Problems for Monogenic Functions in a Biharmonic Algebra, pp. 193-211. In: Rogosin S., Celebi A. (eds) Analysis as a Life, Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday / Trends in Mathematics /, Birkha$\"{u}$ser, 2019, 318 p.

    Gryshchuk S. V. Monogenic functions in 2-D commutative Complex algebras
    to plane orthotropy, Volume of Abstracts, 12th International ISAAC Congress,
    July 29 - August 2 2019, Aveiro, Portugal, Internet source:
    $http://isaac2019.web.ua.pt/Webpage/Welcome\_files/abstracts-volume.pdf$, 117~p.;
    pp.~33.

    Gryshchuk S. V. Monogenic functions in commutative complex algebras of the second rank and the Lamé equilibrium system for some class of plane orthotropy // J. Math Sci.– 2020.– 246, No. 1, [Springer Science+Business Media, LLC], pp. 30-38.


    Gryshchuk S.\,V., New biharmonic bases in commutative algebras of the second rank and monogenic functions related to the biharmonic equation // ArXiv preprint /2001.10712v1 [math.AP]/, arXiv:2001.10712v1 29 Jan 2020 (2020), 9 p.

    Gryshchuk S. V., B_0-valued monogenic functions and
    their applications to the theory of anisotropic plane media, in: ``Analytic Methods of Analysis and Differential Equations: AMADE 2018'', S. V. Rogosin and
    M. V. Dubatovskaya, Belarusian State University, Minsk, Belarus (Eds.), Cambridge Scientic Publishers Ltd, 45 Margett Street, Cottenham, Cambridge CB24 8QY, UK, 2020, ISBN (paperback) 978-1-908106-65-0, 33-48 (260 p).


    Gryshchuk S.V., Plaksa S. A., A Hypercomplex Method for Solving Boundary Value Problems for Biharmonic Functions. In: Ho\v{s}kov\'a-Mayerov\'a~\v{S}., Flaut C., Maturo F. (eds) Algorithms as a Basis of Modern Applied Mathematics. Studies in Fuzziness and Soft Computing, vol 404. Springer, Cham, (2021), 231--255; https://doi.org/10.1007/978-3-030-61334-1_12

    Serhii V. Gryshchuk, Sergiy A. Plaksa, Schwartz-type boundary value problems for canonical domains in a biharmonic plane // Journal of Mathematical Sciences.– 2021. – V. 259, No. 1. – P. 37-52.
    DOI 10.1007/s10958-021-05599-6



    Gryshchuk S.V., Monogenic Functions with Values in Commutative Complex Algebras of the Second Rank with Unit and a Generalized Biharmonic Equation with Simple Nonzero Characteristics, Ukr. Math. J., (2021), Vol. 73, No. 4 (September), Springer Science+Business Media, LLC, pp. 556-571;
    DOI: https://doi.org/10.1007/s11253-021-01943-w



    S. V. Gryshchuk., Monogenic functions with values in algebras of
    the second rank over the complex field and a generalized biharmonic
    equation with a triple characteristic // Ukrainian Mathematical Bulletin,
    19 (2022), No. 1, 35–48;

    transl. in: Journal of Mathematical Sciences, Vol. 262, No. 2, 2022,
    Springer Science+Business Media, LLC, pp. 154-164; DOI: 10.1007/s10958-022-05807-x



    S. V. Gryshchuk, Bases in Commutative Algebras of the Second Rank and Monogenic Functions Related to Some Cases of Plane Orthotropy. In: Cerejeiras, P., Reissig, M., Sabadini, I., Toft, J. (eds) Current Trends in Analysis, its Applications and Computation. Trends in Mathematics. Birkhäuser, Cham, (2022), pp. 163-171, https://doi.org/10.1007/978-3-030-87502-2_16



    S. Gryshchuk, Representations of solutions of Lamé system with real coefficients via monogenic functions in the biharmonic algebra, Proceedings of the International Geometry Center, (2023), 16(1), 78-90. https://doi.org/10.15673/tmgc.v16i1.2400



    S. V. Gryshchuk and S. A. Plaksa, Biharmonic problem for an angle and monogenic functions, Ukr. Math. J., Vol. 74, No. 11 (2023), Springer Science+Business Media, LLC, 1686-1700. https://doi.org/10.1007/s11253-023-02164-z


    Gryshchuk S. V. Biharmonic Continuations of Gradients With the Help of Monogenic Functions With Values in the Biharmonic Algebra. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 4, Apr. 2024, pp. 487-501, doi:10.3842/umzh.v74i4.7867.


    Gryshchuk S. V. Biharmonic continuations of gradients with the help of monogenic functions with values in the biharmonic algebra, Ukr. Math. J., Vol. 76, No.4 (2024), Springer Science+Business Media, LLC, pp. 542-558.


    Copyright © 2007 Institute of Mathematics