Stepaniuk Tetiana
Publications
A. Ebert, P. Kritzer, O. Osisiogu, T. Stepaniuk, Component-by-component digit-by-digit construction of good polynomial lattice rules in weighted Walsh spaces (2020), arXiv: 2008.08966 https://arxiv.org/abs/2008.08966
A.S. Serdyuk and T.A. Stepanyuk, About Lebesgue inequalities on the classes of generalized Poisson integrals, (2020) to appear in JAEN Journal on Approximation
arXiv:2005.13849 https://arxiv.org/abs/2001.00374
A.S. Serdyuk and T.A. Stepanyuk, Uniform approximations by Fourier sums on classes of convolutions of periodic functions, (2020) to appear in Bull. Soc. Sci. Lettres Lodz. Ser. Rech. Deform.,
arXiv:2001.00374 https://arxiv.org/abs/2005.13849
A.S. Serdyuk and T.A. Stepanyuk, Asymptotically best possible Lebesque-type inequalities for the Fourier sums on sets of generalized Poisson integrals, (2020) to appear in FILOMAT
arXiv:1908.09517 https://arxiv.org/abs/1908.09517
T.A. Stepanyuk, Hyperuniform point sets on flat tori: deterministic and probabilistic aspects, Constr Approx (2020). https://doi.org/10.1007/s00365-020-09512-3
T.A. Stepanyuk, (2020) Estimates for logarithmic and Riesz energies for spherical t-designs. In: Tuffin B., L'Ecuyer P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018. Springer Proceedings in Mathematics & Statistics, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-43465-6_23
T.A. Stepanyuk, (2020) Order Estimates of Best Orthogonal Trigonometric Approximations of Classes of Infinitely Differentiable Functions. In: Raigorodskii A., Rassias M. (eds) Trigonometric Sums and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-37904-9_13
Grabner P., Stepanyuk T.A.: Comparison of probabilistic and deterministic point sets, Journal of Approximation Theory, 239 (2019) 128-143.
https://doi.org/10.1016/j.jat.2018.12.001, arXiv: 1803.08901 .
Grabner P., Stepanyuk T.A.: Upper and lower estimates for numerical integration errors on spheres of arbitrary dimension, Journal of Complexity, 53 (2019), 113-132.
https://doi.org/10.1016/j.jco.2018.11.002, arXiv: 1801.05474
A.S. Serdyuk and T.A. Stepanyuk, Uniform approximations by Fourier sums on classes of generalized Poisson integrals, Analysis Mathematica 45, 201–236 (2019). https://doi.org/10.1007/s10476-018-0310-1
A.S. Serdyuk and T.A. Stepanyuk, Lebesque-type inequalities for the Fourier sums on classes of generalized Poisson integrals, Bull. Soc. Sci. Lettres Lodz. Ser. Rech. Deform., Vol. 68 No 2(2018), https://doi.org/10.26485/0459-6854/2018/68.2/4
U. Z. Grabova, I. V. Kal'chuk, T. A. Stepaniuk, Approximative properties of the Weierstrass integrals on the classes W^r_βH^α, Journal of Mathematical Sciences., 231:1 (2018), 41-47
A.S. Serdyuk and T.A. Stepanyuk, Approximations by Fourier sums of classes of generalized Poisson integrals in metrics of spaces Ls, Ukr. Mat. Zh., 69:5 (2017), 695–704 [in Ukrainian]; English translation: Ukr. Math. J., 69:5 (2017), 811-822.
U. Z. Grabova, I. V. Kal'chuk, T. A. Stepanyuk, On the Approximation of the Classes WβrHα by Biharmonic Poisson Integrals , Ukr. Mat. Zh., 70:5 (2018), 625-634 [in Ukrainian]; English translation: Ukr. Math. J., 70:5 (2018), 719-729
U. Z. Grabova, I. V. Kal'chuk, T. A. Stepanyuk, Approximation of functions from the classes W^r_βH^α by Weierstrass Integrals, Ukr. Mat. Zh., 69:3 (2017) [in Ukrainian]; English translation: Ukr. Math. J., 69:3 (2017), 598-608
A.S. Serdyuk and T.A. Stepanyuk, Uniform approximations by Fourier sums on classes of convolutions with generalized Poisson kernels, Dopov. Nats. Akad. Nauk Ukr.,Mat. Pryr. Tekh. Nauky, No. 11 (2016) [in Ukrainian]
A.S. Serdyuk and T.A. Stepanyuk, Estimates for approximations by Fourier sums, best approximations and best orthogonal trigonometric approximations of the classes of (ψ,β)-differentiable functions, Bull. Soc. Sci. Lettres Lodz. Ser. Rech. Deform., vol. 66, No 2 (2016), 35-43.
https://journals.indexcopernicus.com/search/article?articleId=1476129
A.S. Serdyuk and T.A. Stepanyuk, Estimates for the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of not high smoothness, Dopov. Nats. Akad. Nauk Ukr.,Mat. Pryr. Tekh. Nauky, No. 7 (2015), 13-19. [in Ukrainian]
http://www.dopovidi.nas.gov.ua/2015-07/Dopovidi2015-07Contents.pdf
A.S. Serdyuk and T.A. Stepanyuk, Order estimates for the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of low smoothness, Ukr. Mat. Zh., 67:7 (2015), 916-936 [in Ukrainian]; English translation: Ukr. Math. J., 67:7 (2015), 1-24. (Indexed Scopus, Impact factor 0.230)
http://link.springer.com/article/10.1007/s11253-015-1134-9
A.S. Serdyuk and T.A. Stepanyuk, Estimates of the best m-term trigonometric approximations of classes of analytic functions, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, No. 2 (2015), 32-37. [in Ukrainian]
http://dopovidi-nanu.org.ua/en/archive/2015/2/5
A.S. Serdyuk, T.A. Stepanyuk, Order estimates for the best approximations and approximations by Fourier sums in the classes of convolutions of periodic functions of low smoothness in the uniform metric, Ukr.Mat. Zh., 66:12 (2014), 1658-1675 [in Ukrainian]; English translation: Ukr. Math. J., 66:12 (2015), 1862-1882.
Yu.I. Kharkevich, T.A. Stepanyuk, Approximative properties of Poisson integrals on the classes C^{\psi}_{\beta}H_{\omega}, Matem. Zametki, 96:6 (2014), 939-952 [in Russian]; English translation: Math. Notes 96: 5 (2014), 1008-1019.
A.S. Serdyuk, T.A. Stepanyuk, Estimates for the best approximations of the classes of innately differentiable functions in uniform and integral metrics, Ukr. Mat. Zh., 66:9 (2014), 1244-1256 [in Ukrainian]; English translation: Ukr. Math. J., 66:9 (2015), 1393-1407.
T.A. Stepaniuk, Estimates of the best approximations and approximations of Fourier sums of classes of convolutions of periodic functions of not high smoothness in integral metrics, Zb. Pr. Inst. Mat. NAN Ukr. 11:3 (2014), 241-269. [in Ukrainian]
http://trim.imath.kiev.ua/index.php/trim/article/view/80
A.S. Serdyuk, T.A. Stepaniuk, Order estimates for the best approximation and approximation by Fourier sums of classes of infinitely differentiable functions, Zb. Pr. Inst. Mat. NAN Ukr. 10:1 (2013), 255-282. [in Ukrainian]
I.V. Kalchuk and T.A. Stepaniuk, About connection of quantities of approximation of differentiable functions in metrics and L, Nauk. Visnyk Cherniv. yniver.: Zb. Nayk. Pr., Chernivtsi, 528 (2010), 70-74. [in Ukrainian]
J. Zajac, I.V. Kalchuk and T.A. Stepanyk, Approximation of the functions from Sobolevs classes in uniform and integral metrics, Bulletin: de la societe des sciences et des letters de lodz, Vol LIX (2009), no.2, 9-17.
A.S. Serdyuk and T.A. Stepanyuk, About Lebesgue inequalities on the classes of generalized Poisson integrals, (2020) to appear in JAEN Journal on Approximation
arXiv:2005.13849 https://arxiv.org/abs/2001.00374
A.S. Serdyuk and T.A. Stepanyuk, Uniform approximations by Fourier sums on classes of convolutions of periodic functions, (2020) to appear in Bull. Soc. Sci. Lettres Lodz. Ser. Rech. Deform.,
arXiv:2001.00374 https://arxiv.org/abs/2005.13849
A.S. Serdyuk and T.A. Stepanyuk, Asymptotically best possible Lebesque-type inequalities for the Fourier sums on sets of generalized Poisson integrals, (2020) to appear in FILOMAT
arXiv:1908.09517 https://arxiv.org/abs/1908.09517
T.A. Stepanyuk, Hyperuniform point sets on flat tori: deterministic and probabilistic aspects, Constr Approx (2020). https://doi.org/10.1007/s00365-020-09512-3
T.A. Stepanyuk, (2020) Estimates for logarithmic and Riesz energies for spherical t-designs. In: Tuffin B., L'Ecuyer P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018. Springer Proceedings in Mathematics & Statistics, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-43465-6_23
T.A. Stepanyuk, (2020) Order Estimates of Best Orthogonal Trigonometric Approximations of Classes of Infinitely Differentiable Functions. In: Raigorodskii A., Rassias M. (eds) Trigonometric Sums and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-37904-9_13
Grabner P., Stepanyuk T.A.: Comparison of probabilistic and deterministic point sets, Journal of Approximation Theory, 239 (2019) 128-143.
https://doi.org/10.1016/j.jat.2018.12.001, arXiv: 1803.08901 .
Grabner P., Stepanyuk T.A.: Upper and lower estimates for numerical integration errors on spheres of arbitrary dimension, Journal of Complexity, 53 (2019), 113-132.
https://doi.org/10.1016/j.jco.2018.11.002, arXiv: 1801.05474
A.S. Serdyuk and T.A. Stepanyuk, Uniform approximations by Fourier sums on classes of generalized Poisson integrals, Analysis Mathematica 45, 201–236 (2019). https://doi.org/10.1007/s10476-018-0310-1
A.S. Serdyuk and T.A. Stepanyuk, Lebesque-type inequalities for the Fourier sums on classes of generalized Poisson integrals, Bull. Soc. Sci. Lettres Lodz. Ser. Rech. Deform., Vol. 68 No 2(2018), https://doi.org/10.26485/0459-6854/2018/68.2/4
U. Z. Grabova, I. V. Kal'chuk, T. A. Stepaniuk, Approximative properties of the Weierstrass integrals on the classes W^r_βH^α, Journal of Mathematical Sciences., 231:1 (2018), 41-47
A.S. Serdyuk and T.A. Stepanyuk, Approximations by Fourier sums of classes of generalized Poisson integrals in metrics of spaces Ls, Ukr. Mat. Zh., 69:5 (2017), 695–704 [in Ukrainian]; English translation: Ukr. Math. J., 69:5 (2017), 811-822.
U. Z. Grabova, I. V. Kal'chuk, T. A. Stepanyuk, On the Approximation of the Classes WβrHα by Biharmonic Poisson Integrals , Ukr. Mat. Zh., 70:5 (2018), 625-634 [in Ukrainian]; English translation: Ukr. Math. J., 70:5 (2018), 719-729
U. Z. Grabova, I. V. Kal'chuk, T. A. Stepanyuk, Approximation of functions from the classes W^r_βH^α by Weierstrass Integrals, Ukr. Mat. Zh., 69:3 (2017) [in Ukrainian]; English translation: Ukr. Math. J., 69:3 (2017), 598-608
A.S. Serdyuk and T.A. Stepanyuk, Uniform approximations by Fourier sums on classes of convolutions with generalized Poisson kernels, Dopov. Nats. Akad. Nauk Ukr.,Mat. Pryr. Tekh. Nauky, No. 11 (2016) [in Ukrainian]
A.S. Serdyuk and T.A. Stepanyuk, Estimates for approximations by Fourier sums, best approximations and best orthogonal trigonometric approximations of the classes of (ψ,β)-differentiable functions, Bull. Soc. Sci. Lettres Lodz. Ser. Rech. Deform., vol. 66, No 2 (2016), 35-43.
https://journals.indexcopernicus.com/search/article?articleId=1476129
A.S. Serdyuk and T.A. Stepanyuk, Estimates for the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of not high smoothness, Dopov. Nats. Akad. Nauk Ukr.,Mat. Pryr. Tekh. Nauky, No. 7 (2015), 13-19. [in Ukrainian]
http://www.dopovidi.nas.gov.ua/2015-07/Dopovidi2015-07Contents.pdf
A.S. Serdyuk and T.A. Stepanyuk, Order estimates for the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of low smoothness, Ukr. Mat. Zh., 67:7 (2015), 916-936 [in Ukrainian]; English translation: Ukr. Math. J., 67:7 (2015), 1-24. (Indexed Scopus, Impact factor 0.230)
http://link.springer.com/article/10.1007/s11253-015-1134-9
A.S. Serdyuk and T.A. Stepanyuk, Estimates of the best m-term trigonometric approximations of classes of analytic functions, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, No. 2 (2015), 32-37. [in Ukrainian]
http://dopovidi-nanu.org.ua/en/archive/2015/2/5
A.S. Serdyuk, T.A. Stepanyuk, Order estimates for the best approximations and approximations by Fourier sums in the classes of convolutions of periodic functions of low smoothness in the uniform metric, Ukr.Mat. Zh., 66:12 (2014), 1658-1675 [in Ukrainian]; English translation: Ukr. Math. J., 66:12 (2015), 1862-1882.
Yu.I. Kharkevich, T.A. Stepanyuk, Approximative properties of Poisson integrals on the classes C^{\psi}_{\beta}H_{\omega}, Matem. Zametki, 96:6 (2014), 939-952 [in Russian]; English translation: Math. Notes 96: 5 (2014), 1008-1019.
A.S. Serdyuk, T.A. Stepanyuk, Estimates for the best approximations of the classes of innately differentiable functions in uniform and integral metrics, Ukr. Mat. Zh., 66:9 (2014), 1244-1256 [in Ukrainian]; English translation: Ukr. Math. J., 66:9 (2015), 1393-1407.
T.A. Stepaniuk, Estimates of the best approximations and approximations of Fourier sums of classes of convolutions of periodic functions of not high smoothness in integral metrics, Zb. Pr. Inst. Mat. NAN Ukr. 11:3 (2014), 241-269. [in Ukrainian]
http://trim.imath.kiev.ua/index.php/trim/article/view/80
A.S. Serdyuk, T.A. Stepaniuk, Order estimates for the best approximation and approximation by Fourier sums of classes of infinitely differentiable functions, Zb. Pr. Inst. Mat. NAN Ukr. 10:1 (2013), 255-282. [in Ukrainian]
I.V. Kalchuk and T.A. Stepaniuk, About connection of quantities of approximation of differentiable functions in metrics and L, Nauk. Visnyk Cherniv. yniver.: Zb. Nayk. Pr., Chernivtsi, 528 (2010), 70-74. [in Ukrainian]
J. Zajac, I.V. Kalchuk and T.A. Stepanyk, Approximation of the functions from Sobolevs classes in uniform and integral metrics, Bulletin: de la societe des sciences et des letters de lodz, Vol LIX (2009), no.2, 9-17.