Satur Oksana
Publications
1. Koshmanenko V.D., Satur O.R. Sure event problem in multicomponent dynamical systems with attractive
interaction // Journal of Mathematical Sciences. 2020. 249, No.4. P. 629646.
https://doi.org/10.1007/s10958-020-04962-3
2. Satur O.R., Kharchenko N.V. The model of dynamical system for the attainment of consensus // Ukrainian Mathematical Journal. 2020. 71, No.9. P. 14561469. https://doi.org/10.1007/s11253-020-01725-w
3. Koshmanenko V., Satur O., Voloshyna V. Point spectrum in conflict dynamical systems with fractal partition // Methods of Functional Analysis and Topology. 2019. 25, No.4. P. 324338.
4. Satur O.R. Limit states of multicomponent discrete dynamical systems // J Math Sci. 2021. 256. P. 648662. https://doi.org/10.1007/s10958-021-05451-x
5. Satur O.R. Dependence of the Behaviors of Trajectories of Dynamic Conflict Systems on the Interaction Vector // J Math Sci. 2023. 274. P. 7693. https://doi.org/10.1007/s10958-023-06572-1
6. Satur O. Convergence to equilibrium attractor in models of dynamic confl ict systems with attractive interaction // Reports of the National Academy of Sciences of Ukraine. 2023. 3. P. 38. https://doi.org/10.15407/dopovidi2023.03.003
7. Satur O. Dynamics of Conflict Interaction in Terms of Minimal Players. In: Timokha, A. (eds) Analytical and Approximate Methods for Complex Dynamical Systems. Understanding Complex Systems. Springer, Cham., P. 63-74, 2025, https://doi.org/10.1007/978-3-031-77378-5_4
8. Koshmanenko V., Satur O. Point Spectrum in the Equilibrium States of Dynamic Conflict Systems and Its Role in the Models of Beliefs Formation // Ukrainskyi Matematychnyi Zhurnal, vol. 77, no. 4, June 2025, pp. 244264, https://doi.org/10.3842/umzh.v77i4.8306
interaction // Journal of Mathematical Sciences. 2020. 249, No.4. P. 629646.
https://doi.org/10.1007/s10958-020-04962-3
2. Satur O.R., Kharchenko N.V. The model of dynamical system for the attainment of consensus // Ukrainian Mathematical Journal. 2020. 71, No.9. P. 14561469. https://doi.org/10.1007/s11253-020-01725-w
3. Koshmanenko V., Satur O., Voloshyna V. Point spectrum in conflict dynamical systems with fractal partition // Methods of Functional Analysis and Topology. 2019. 25, No.4. P. 324338.
4. Satur O.R. Limit states of multicomponent discrete dynamical systems // J Math Sci. 2021. 256. P. 648662. https://doi.org/10.1007/s10958-021-05451-x
5. Satur O.R. Dependence of the Behaviors of Trajectories of Dynamic Conflict Systems on the Interaction Vector // J Math Sci. 2023. 274. P. 7693. https://doi.org/10.1007/s10958-023-06572-1
6. Satur O. Convergence to equilibrium attractor in models of dynamic confl ict systems with attractive interaction // Reports of the National Academy of Sciences of Ukraine. 2023. 3. P. 38. https://doi.org/10.15407/dopovidi2023.03.003
7. Satur O. Dynamics of Conflict Interaction in Terms of Minimal Players. In: Timokha, A. (eds) Analytical and Approximate Methods for Complex Dynamical Systems. Understanding Complex Systems. Springer, Cham., P. 63-74, 2025, https://doi.org/10.1007/978-3-031-77378-5_4
8. Koshmanenko V., Satur O. Point Spectrum in the Equilibrium States of Dynamic Conflict Systems and Its Role in the Models of Beliefs Formation // Ukrainskyi Matematychnyi Zhurnal, vol. 77, no. 4, June 2025, pp. 244264, https://doi.org/10.3842/umzh.v77i4.8306