Сатур Оксана Романівна
Публікації
1. Сатур О.Р. Граничнi стани дискретних динамiчних систем з притягальною взаємодiєю // Збiрник праць Iнституту математики НАН України. – 14, № 2. – Київ: Iнcтитут математики НАН України. – 2017. – C. 122–132.
2. Сатур О.Р. Динамiчна система конфлiкту з притяганням для трiйки взаємодiючих сторiн // Науковi записки НаУКМА. Фiзикоматематичнi науки. – 2017. – 201. – С. 34–37.
3. Koshmanenko V.D., Satur O.R. Sure event problem in multicomponent dynamical systems with attractive
interaction // Journal of Mathematical Sciences. – 2020. – 249, No.4. – P. 629–646. https://doi.org/10.1007/s10958-020-04962-3
4. Satur O.R., Kharchenko N.V. The model of dynamical system for the attainment of consensus // Ukrainian Mathematical Journal. – 2020. – 71, No.9. – P. 1456–1469. https://doi.org/10.1007/s11253-020-01725-w
5. Koshmanenko V., Satur O., Voloshyna V. Point spectrum in conflict dynamical systems with fractal partition // Methods of Functional Analysis and Topology. – 2019. – 25, No.4. – P. 324–338.
6. Satur O.R. Limit states of multicomponent discrete dynamical systems // J Math Sci. – 2021. – 256. P. 648–662 (2021). https://doi.org/10.1007/s10958-021-05451-x
7. Satur O.R. Dependence of the Behaviors of Trajectories of Dynamic Conflict Systems on the Interaction Vector // J Math Sci. -2023. – 274. – P. 76–93. https://doi.org/10.1007/s10958-023-06572-1
8. Satur O. Convergence to equilibrium attractor in models of dynamic conflict systems with attractive interaction // Reports of the National Academy of Sciences of Ukraine. – 2023. – 3. – P. 3–8. https://doi.org/10.15407/dopovidi2023.03.003
9. Satur O. Dynamics of Conflict Interaction in Terms of Minimal Players. In: Timokha, A. (eds) Analytical and Approximate Methods for Complex Dynamical Systems. Understanding Complex Systems. Springer, Cham., P. 63-74, 2025, https://doi.org/10.1007/978-3-031-77378-5_4
10. Koshmanenko V., Satur O. Point Spectrum in the Equilibrium States of Dynamical Conflict Systems and its Role in the Models of Beliefs Formation. Ukr Math J 77, P. 491–513, 2025. https://doi.org/10.1007/s11253-025-02472-6
11. Сатур О.Р. Нелiнiйнi властивостi траєкторiй в моделях динамiчних систем конфлiкту // Збiрник Праць Iнституту математики НАН України. — 2025. — 21, 1. — С.191–204. DOI: 10.3842/trim.v21n1.549
12. Кошманенко В. Д., Сатур О.Р. До проблеми мiнiмiзацiї втрат у моделi динамiчної системи конфлiкту на територiї з трьома регiонами. Нелiнiйнi коливання. 2025. 28, № 2. С. 206–225.
2. Сатур О.Р. Динамiчна система конфлiкту з притяганням для трiйки взаємодiючих сторiн // Науковi записки НаУКМА. Фiзикоматематичнi науки. – 2017. – 201. – С. 34–37.
3. Koshmanenko V.D., Satur O.R. Sure event problem in multicomponent dynamical systems with attractive
interaction // Journal of Mathematical Sciences. – 2020. – 249, No.4. – P. 629–646. https://doi.org/10.1007/s10958-020-04962-3
4. Satur O.R., Kharchenko N.V. The model of dynamical system for the attainment of consensus // Ukrainian Mathematical Journal. – 2020. – 71, No.9. – P. 1456–1469. https://doi.org/10.1007/s11253-020-01725-w
5. Koshmanenko V., Satur O., Voloshyna V. Point spectrum in conflict dynamical systems with fractal partition // Methods of Functional Analysis and Topology. – 2019. – 25, No.4. – P. 324–338.
6. Satur O.R. Limit states of multicomponent discrete dynamical systems // J Math Sci. – 2021. – 256. P. 648–662 (2021). https://doi.org/10.1007/s10958-021-05451-x
7. Satur O.R. Dependence of the Behaviors of Trajectories of Dynamic Conflict Systems on the Interaction Vector // J Math Sci. -2023. – 274. – P. 76–93. https://doi.org/10.1007/s10958-023-06572-1
8. Satur O. Convergence to equilibrium attractor in models of dynamic conflict systems with attractive interaction // Reports of the National Academy of Sciences of Ukraine. – 2023. – 3. – P. 3–8. https://doi.org/10.15407/dopovidi2023.03.003
9. Satur O. Dynamics of Conflict Interaction in Terms of Minimal Players. In: Timokha, A. (eds) Analytical and Approximate Methods for Complex Dynamical Systems. Understanding Complex Systems. Springer, Cham., P. 63-74, 2025, https://doi.org/10.1007/978-3-031-77378-5_4
10. Koshmanenko V., Satur O. Point Spectrum in the Equilibrium States of Dynamical Conflict Systems and its Role in the Models of Beliefs Formation. Ukr Math J 77, P. 491–513, 2025. https://doi.org/10.1007/s11253-025-02472-6
11. Сатур О.Р. Нелiнiйнi властивостi траєкторiй в моделях динамiчних систем конфлiкту // Збiрник Праць Iнституту математики НАН України. — 2025. — 21, 1. — С.191–204. DOI: 10.3842/trim.v21n1.549
12. Кошманенко В. Д., Сатур О.Р. До проблеми мiнiмiзацiї втрат у моделi динамiчної системи конфлiкту на територiї з трьома регiонами. Нелiнiйнi коливання. 2025. 28, № 2. С. 206–225.
