|
SIGMA 21 (2025), 051, 20 pages
https://doi.org/10.3842/SIGMA.2025.051
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne
Factorization of Basic Hypergeometric Series
Jonathan G. Bradley-Thrush
Grupo de Física Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Received November 30, 2024, in final form June 22, 2025; Published online July 06, 2025
Abstract
The general problem of the factorization of a basic hypergeometric series is presented and discussed. The case of the general $_2\psi_2$ series is examined in detail. Connections are found with the theory of basic hypergeometric series on root systems. Alternative proofs of several well-known summation and transformation formulae, including Gustafson's generalization of Ramanujan's $_1\psi_1$ summation, are obtained incidentally.
Key words: basic hypergeometric series; theta functions; elliptic functions; $q$-difference equations.
pdf (502 kb)
tex (27 kb)
References
- Abu Risha M.H., Annaby M.H., Ismail M.E.H., Mansour Z.S., Linear $q$-difference equations, Z. Anal. Anwend. 26 (2007), 481-494.
- Andrews G.E., Berndt B.C., Ramanujan's lost notebook. Part I, Springer, New York, 2005.
- Andrews G.E., Berndt B.C., Ramanujan's lost notebook. Part II, Springer, New York, 2009.
- Aomoto K., Ito M., $BC_n$-type Jackson integral generalized from Gustafson's $C_n$-type sum, J. Difference Equ. Appl. 14 (2008), 1059-1097.
- Appell P., Sur les fonctions doublement périodiques de troisième espèce, Ann. Sci. École Norm. Sup. (3) 1 (1884), 135-164.
- Bailey W.N., Series of hypergeometric type which are infinite in both directions, Quart. J. Math. Oxford Ser. 7 (1936), 105-115.
- Bailey W.N., On the basic bilateral hypergeometric series ${}_2\Psi_2$, Quart. J. Math. Oxford Ser. (2) 1 (1950), 194-198.
- Bradley-Thrush J.G., Symmetries in the theory of basic hypergeometric series, Ph.D. Thesis, University of Florida, 2023.
- Briot C., Bouquet J., Théorie des fonctions elliptiques, 2nd ed., Gauthier-Villars, Paris, 1875.
- Cauchy A.-L., Mémoire sur les fonctions dont plusieurs valeurs sont liées entre elles par une équation linéare, et sur diverses transformations de produits composés d'un nombre indéfini de facteurs, C. R. Math. Acad. Sci. Paris 17 (1843), 523-531.
- Euler L., De partitione numerorum, Novi Comment. Acad. Sci. Petrop. 3 (1753), 125-169.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
- Gustafson R.A., Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$, SIAM J. Math. Anal. 18 (1987), 1576-1596.
- Hardy G.H., Ramanujan: Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, 1940.
- Heine E., Untersuchungen über die Reihe $1+{(1-q^{\alpha})(1-q^{\beta}) \over (1-q)(1-q^{\gamma})} \cdot x + {(1-q^{\alpha})(1-q^{\alpha+1})(1-q^{\beta})(1-q^{\beta+1}) \over (1-q)(1-q^2)(1-q^{\gamma})(1-q^{\gamma+1})} \cdot x^2 + \cdots$, J. Reine Angew. Math. 34 (1847), 285-328.
- Ito M., Forrester P.J., Ramanujan's ${}_1\psi_1$ summation theorem—perspective, announcement of bilateral $q$-Dixon-Anderson and $q$-Selberg integral extensions, and context, Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), 92-97, arXiv:1308.6665.
- Ito M., Sanada Y., On the Sears-Slater basic hypergeometric transformations, Ramanujan J. 17 (2008), 245-257.
- Jacobi C.G.J., Über einige der Binomialreihe analoge Reihen, J. Reine Angew. Math. 32 (1846), 197-204.
- Johnson W.P., An introduction to $q$-analysis, American Mathematical Society, Providence, RI, 2020.
- Ramanujan S., The lost notebook and other unpublished papers, Narosa Publishing House, New Delhi, 1988.
- Rosengren H., Schlosser M., Elliptic determinant evaluations and the Macdonald identities for affine root systems, Compos. Math. 142 (2006), 937-961, arXiv:math.CA/0505213.
- Slater L.J., General transformations of bilateral series, Quart. J. Math. Oxford Ser. (2) 3 (1952), 73-80.
- Whittaker E.T., Watson G.N., A course of modern analysis, 4th ed., Cambridge University Press, Cambridge, 1927.
|
|