Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 067, 135 pages      arXiv:2010.11235      https://doi.org/10.3842/SIGMA.2025.067
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday

Trans-Series Asymptotics of Solutions to the Degenerate Painlevé III Equation: A Case Study

Arthur Vartanian
Department of Mathematics, College of Charleston, Charleston, South Carolina 29424, USA

Received August 15, 2023, in final form June 29, 2025; Published online August 08, 2025

Abstract
A one-parameter family of trans-series asymptotics as $\tau \to \pm \infty$ and $\tau \to \pm {\rm i} \infty$ for solutions of the degenerate Painlevé III equation (DP3E), $$ u^{\prime \prime}(\tau) = \frac{(u^{\prime} (\tau))^{2}}{u(\tau)} - \frac{u^{\prime}(\tau)}{\tau} + \frac{1}{\tau}\bigl(-8 \varepsilon (u(\tau))^{2} + 2ab\bigr) + \frac{b^{2}}{u(\tau)},$$ where $\varepsilon \in \lbrace \pm 1 \rbrace$, $a \in \mathbb{C}$, and $b \in \mathbb{R} \setminus \lbrace 0 \rbrace$, are parametrised in terms of the monodromy data of an associated first-order $2 \times 2$ matrix linear ODE via the isomonodromy deformation approach: trans-series asymptotics for the associated Hamiltonian and principal auxiliary functions and the solution of one of the $\sigma$-forms of the DP3E are also obtained. The actions of various Lie-point symmetries for the DP3E are derived.

Key words: isomonodromy deformations; Stokes phenomena; symmetries.

pdf (2 mb)   tex (152 kb)  

References

  1. Ahmed A., Dunne G.V., Transmutation of a trans-series: the Gross-Witten-Wadia phase transition, J. High Energy Phys. 2017 (2017), no. 11, 054, 51 pages, arXiv:1710.01812.
  2. Andreev F.V., Kitaev A.V., Exponentially small corrections to divergent asymptotic expansions of solutions of the fifth Painlevé equation, Math. Res. Lett. 4 (1997), 741-759.
  3. Aniceto I., Başar G., Schiappa R., A primer on resurgent transseries and their asymptotics, Phys. Rep. 809 (2019), 1-135, arXiv:1802.10441.
  4. Atkin M.R., Claeys T., Mezzadri F., Random matrix ensembles with singularities and a hierarchy of Painlevé III equations, Int. Math. Res. Not. 2016 (2016), 2320-2375, arXiv:1501.04475.
  5. Baldino S., Schiappa R., Schwick M., Vega R., Resurgent stokes data for Painlevé equations and two-dimensional quantum (super) gravity, Commun. Number Theory Phys. 17 (2023), 385-552, arXiv:2203.13726.
  6. Barhoumi A., Lisovyy O., Miller P.D., Prokhorov A., Painlevé-III monodromy maps under the $D_6\to D_8$ confluence and applications to the large-parameter asymptotics of rational solutions, SIGMA 20 (2024), 019, 77 pages, arXiv:2307.11217.
  7. Bilman D., Buckingham R., Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation, J. Nonlinear Sci. 29 (2019), 2185-2229, arXiv:1807.09058.
  8. Bilman D., Ling L., Miller P.D., Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy, Duke Math. J. 169 (2020), 671-760, arXiv:1806.00545.
  9. Bobenko A.I., Eitner U., Painlevé equations in the differential geometry of surfaces, Lecture Notes in Math., Vol. 1753, Springer, Berlin, 2000.
  10. Bolibruch A., Its A., Kapaev A., On the Riemann-Hilbert-Birkhoff inverse monodromy problem and the Painlevé equations, St. Petersburg Math. J. 16 (2005), 105-142.
  11. Bothner T., Miller P.D., Rational solutions of the Painlevé-III equation: large parameter asymptotics, Constr. Approx. 51 (2020), 123-224, arXiv:1808.01421.
  12. Brzeziński J., Galois theory through exercises, Springer Undergrad. Math. Ser., Springer, Cham, 2018.
  13. Buckingham R.J., Miller P.D., On the algebraic solutions of the Painlevé-III $(\rm D_7)$ equation, Phys. D 441 (2022), 133493, 22 pages, arXiv:2202.04217.
  14. Buckingham R.J., Miller P.D., Differential equations for approximate solutions of Painlevé equations: application to the algebraic solutions of the Painlevé-III $(\rm D_7)$ equation, SIGMA 20 (2024), 008, 27 pages, arXiv:2308.16051.
  15. Chen M., Chen Y., Fan E., Perturbed Hankel determinant, correlation functions and Painlevé equations, J. Math. Phys. 57 (2016), 023501, 31 pages, arXiv:1507.05261.
  16. Chen Y., Its A., Painlevé III and a singular linear statistics in Hermitian random matrix ensembles. I, J. Approx. Theory 162 (2010), 270-297, arXiv:0808.3590.
  17. Contatto F., Integrable Abelian vortex-like solitons, Phys. Lett. B 768 (2017), 23-29, arXiv:1612.01879.
  18. Contatto F., Dorigoni D., Instanton solutions from Abelian sinh-Gordon and Tzitzeica vortices, J. Geom. Phys. 98 (2015), 429-445, arXiv:1412.8312.
  19. Dai D., Xu S.X., Zhang L., Gap probability at the hard edge for random matrix ensembles with pole singularities in the potential, SIAM J. Math. Anal. 50 (2018), 2233-2279, arXiv:1710.08132.
  20. Deift P.A., Zhou X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337.
  21. Delabaere E., Divergent series, summability and resurgence III. Resurgent methods and the first Painlevé equation, Lecture Notes in Math., Vol. 2155, Springer, Cham, 2016.
  22. Dunajski M., Abelian vortices from sinh-Gordon and Tzitzeica equations, Phys. Lett. B 710 (2012), 236-239, arXiv:1201.0105.
  23. Dunajski M., Gavrea N., Elizabethan vortices, Nonlinearity 36 (2023), 4169-4186, arXiv:2301.06191.
  24. Dunajski M., Plansangkate P., Strominger-Yau-Zaslow geometry, affine spheres and Painlevé III, Comm. Math. Phys. 290 (2009), 997-1024, arXiv:0809.3015.
  25. Dunne G.V., Resurgence, Painlevé equations and conformal blocks, J. Phys. A 52 (2019), 463001, 31 pages, arXiv:1901.02076.
  26. Edgar G.A., Transseries for beginners, Real Anal. Exchange 35 (2010), 253-309, arXiv:0801.4877.
  27. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. II, Robert E. Krieger Publishing, Melbourne, Fla., 1981.
  28. Fedoryuk M.V., Asymptotic analysis. Linear ordinary differential equations, Springer, Berlin, 1993.
  29. Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Y., Painlevé transcendents: The Riemann-Hilbert approach, Math. Surveys Monogr., Vol. 128, American Mathematical Society, Providence, RI, 2006.
  30. Garoufalidis S., Its A., Kapaev A., Mariño M., Asymptotics of the instantons of Painlevé I, Int. Math. Res. Not. 2012 (2012), 561-606, arXiv:1002.3634.
  31. Gavrylenko P., Lisovyy O., Pure ${\rm SU}(2)$ gauge theory partition function and generalized Bessel kernel, in String-Math 2016, Proc. Sympos. Pure Math., Vol. 98, American Mathematical Society, Providence, RI, 2018, 181-205, arXiv:1705.01869.
  32. Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 5th ed., Academic Press, Boston, MA, 1994.
  33. Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Stud. Math., Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
  34. Guest M.A., Hertling C., Painlevé III: a case study in the geometry of meromorphic connections, Lecture Notes in Math., Vol. 2198, Springer, Cham, 2017.
  35. Guest M.A., Its A.R., Lin C.S., Isomonodromy aspects of the $\rm tt^*$ equations of Cecotti and Vafa I. Stokes data, Int. Math. Res. Not. 2015 (2015), 11745-11784, arXiv:1209.2045.
  36. Guest M.A., Its A.R., Lin C.S., Isomonodromy aspects of the tt* equations of Cecotti and Vafa II: Riemann-Hilbert problem, Comm. Math. Phys. 336 (2015), 337-380, arXiv:1312.4825.
  37. Guest M.A., Its A.R., Lin C.S., Isomonodromy aspects of the tt* equations of Cecotti and Vafa III: Iwasawa factorization and asymptotics, Comm. Math. Phys. 374 (2020), 923-973, arXiv:1707.00259.
  38. Guest M.A., Its A.R., Lin C.S., The tt*-Toda equations of $A_{n}$ type, arXiv:2302.04597.
  39. Hildebrand R., Self-associated three-dimensional cones, Beitr. Algebra Geom. 63 (2022), 867-906, arXiv:1806.06588.
  40. Hille E., Ordinary differential equations in the complex domain, Dover Publications, Mineola, NY, 1997.
  41. Its A.R., ''Isomonodromic'' solutions of equations of zero curvature, Math. USSR Izv. 26 (1986), 497-529.
  42. Its A.R., Fokas A.S., Kapaev A.A., On the asymptotic analysis of the Painlevé equations via the isomonodromy method, Nonlinearity 7 (1994), 1291-1325.
  43. Its A.R., Kapaev A.A., Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution, J. Phys. A 31 (1998), 4073-4113.
  44. Its A.R., Kapaev A.A., Quasi-linear Stokes phenomenon for the second Painlevé transcendent, Nonlinearity 16 (2003), 363-386, arXiv:nlin/0108010.
  45. Its A.R., Novokshenov V.Yu., The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Math., Vol. 1191, Springer, Berlin, 1986.
  46. Iwaki K., Voros coefficients of the third Painlevé equation and parametric Stokes phenomena, arXiv:1303.3603.
  47. Iwaki K., On WKB theoretic transformations for Painlevé transcendents on degenerate Stokes segments, Publ. Res. Inst. Math. Sci. 51 (2015), 1-57, arXiv:1312.1874.
  48. Janson S., Roots of polynomials of degrees $3$ and $4$, arXiv:1009.2373.
  49. Joshi N., Lustri C.J., Luu S., Stokes phenomena in discrete Painlevé II, Proc. A. 473 (2017), 20160539, 20 pages, arXiv:1607.04494.
  50. Kapaev A.A., Quasi-linear Stokes phenomenon for the Painlevé first equation, J. Phys. A 37 (2004), 11149-11167, arXiv:nlin/0404026.
  51. Kapaev A.A., Quasi-linear Stokes phenomenon for the Hastings-McLeod solution of the second Painlevé equation, arXiv:nlin.SI/0411009.
  52. Kitaev A.V., The method of isomonodromic deformations and the asymptotics of the solutions of the ''complete'' third Painlevé equation, Math. USSR Izv. 31 (1988), 193-207.
  53. Kitaev A.V., Method of isomonodromic deformations for the ''degenerate'' third Painlevé equation, J. Sov. Math. 46 (1989), 2077-2083.
  54. Kitaev A.V., The justification of asymptotic formulas that can be obtained by the method of isomonodromic deformations, J. Sov. Math. 57 (1991), 3131-3135.
  55. Kitaev A.V., Elliptic asymptotics of the first and second Painlevé transcendents, Russian Math. Surveys 49 (1994), 81-150.
  56. Kitaev A.V., Meromorphic solution of the degenerate third Painlevé equation vanishing at the origin, SIGMA 15 (2019), 046, 53 pages, arXiv:1809.00122.
  57. Kitaev A.V., Vartanian A., Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: II, Inverse Problems 26 (2010), 105010, 58 pages, arXiv:1005.2677.
  58. Kitaev A.V., Vartanian A., Asymptotics of integrals of some functions related to the degenerate third Painlevé equation, J. Math. Sci. 242 (2019), 715-721.
  59. Kitaev A.V., Vartanian A., Algebroid solutions of the degenerate third Painlevé equation for vanishing formal monodromy parameter, J. Math. Anal. Appl. 532 (2024), 127917, 86 pages, arXiv:2304.05671.
  60. Kitaev A.V., Vartanian A., One-parameter meromorphic solution of the degenerate third Painlevé equation with formal monodromy parameter $a = \pm {\rm i}/2$ vanishing at the origin, J. Math. Sci. 284 (2024), 700-725, arXiv:2305.17278.
  61. Kitaev A.V., Vartanian A.H., Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I, Inverse Problems 20 (2004), 1165-1206, arXiv:math.CA/0312075.
  62. Lin Y., Dai D., Tibboel P., Existence and uniqueness of tronquée solutions of the third and fourth Painlevé equations, Nonlinearity 27 (2014), 171-186, arXiv:1306.1317.
  63. Loday-Richaud M., Divergent series, summability and resurgence II. Simple and multiple summability, Lecture Notes in Math., Vol. 2154, Springer, Cham, 2016.
  64. Miller P.D., On the increasing tritronquée solutions of the Painlevé-II equation, SIGMA 14 (2018), 125, 38 pages, arXiv:1804.03173.
  65. Murata Y., Classical solutions of the third Painlevé equation, Nagoya Math. J. 139 (1995), 37-65.
  66. Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$, J. Math. Sci. Univ. Tokyo 13 (2006), 145-204.
  67. Olde Daalhuis A.B., Exponentially-improved asymptotics and numerics for the (un)perturbed first Painlevé equation, J. Phys. A 55 (2022), 304004, 16 pages, arXiv:2205.12800.
  68. Shimomura S., Truncated solutions of the fifth Painlevé equation, Funkcial. Ekvac. 54 (2011), 451-471.
  69. Shimomura S., Series expansions of Painlevé transcendents near the point at infinity, Funkcial. Ekvac. 58 (2015), 277-319.
  70. Shimomura S., Three-parameter solutions of the PV Schlesinger-type equation near the point at infinity and the monodromy data, SIGMA 14 (2018), 113, 50 pages, arXiv:1804.10369.
  71. Shimomura S., Elliptic asymptotic representation of the fifth Painlevé transcendents, Kyushu J. Math. 76 (2022), 43-99, arXiv:2012.07321.
  72. Shimomura S., Boutroux ansatz for the degenerate third Painlevé transcendents, Publ. Res. Inst. Math. Sci. 60 (2024), 651-698, arXiv:2207.11495.
  73. Shimomura S., Elliptic asymptotics for the complete third Painlevé transcendents, Funkcial. Ekvac. 68 (2025), 69-117, arXiv:2211.00886.
  74. Steinmetz N., Nevanlinna theory, normal families, and algebraic differential equations, Universitext, Springer, Cham, 2017.
  75. Suleimanov B.I., Effect of a small dispersion on self-focusing in a spatially one-dimensional case, JETP Lett. 106 (2017), 400-405.
  76. Takei Y., On the role of the degenerate third Painlevé equation of type $(D8)$ in the exact WKB analysis, in Exact WKB Analysis and Microlocal Analysis, RIMS K^okyûroku Bessatsu, Vol. B37, Research Institute for Mathematical Sciences, Kyoto, 2013, 211-222.
  77. Tracy C.A., Widom H., Asymptotics of a class of solutions to the cylindrical Toda equations, Comm. Math. Phys. 190 (1998), 697-721, arXiv:solv-int/9701003.
  78. van Spaendonck A., Vonk M., Painlevé I and exact WKB: Stokes phenomenon for two-parameter transseries, J. Phys. A 55 (2022), 454003, 64 pages, arXiv:2204.09062.
  79. Wakako H., Takei Y., Exact WKB analysis for the degenerate third Painlevé equation of type $(D_8)$, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 63-68.
  80. Wasow W., Linear turning point theory, Appl. Math. Sci., Vol. 54, Springer, New York, 1985.
  81. Xia X., Tronquée solutions of the third and fourth Painlevé equations, SIGMA 14 (2018), 095, 28 pages, arXiv:1803.11230.
  82. Xu S.X., Dai D., Zhao Y.Q., Critical edge behavior and the Bessel to Airy transition in the singularly perturbed Laguerre unitary ensemble, Comm. Math. Phys. 332 (2014), 1257-1296, arXiv:1309.4354.
  83. Xu S.X., Dai D., Zhao Y.Q., Painlevé III asymptotics of Hankel determinants for a singularly perturbed Laguerre weight, J. Approx. Theory 192 (2015), 1-18, arXiv:1407.7334.

Previous article  Next article  Contents of Volume 21 (2025)