|
SIGMA 21 (2025), 067, 135 pages arXiv:2010.11235
https://doi.org/10.3842/SIGMA.2025.067
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday
Trans-Series Asymptotics of Solutions to the Degenerate Painlevé III Equation: A Case Study
Arthur Vartanian
Department of Mathematics, College of Charleston, Charleston, South Carolina 29424, USA
Received August 15, 2023, in final form June 29, 2025; Published online August 08, 2025
Abstract
A one-parameter family of trans-series asymptotics as $\tau \to \pm \infty$ and $\tau \to \pm {\rm i} \infty$ for solutions of the degenerate Painlevé III equation (DP3E),
$$ u^{\prime \prime}(\tau) = \frac{(u^{\prime} (\tau))^{2}}{u(\tau)} - \frac{u^{\prime}(\tau)}{\tau} + \frac{1}{\tau}\bigl(-8 \varepsilon (u(\tau))^{2} + 2ab\bigr) + \frac{b^{2}}{u(\tau)},$$ where $\varepsilon \in \lbrace \pm 1 \rbrace$, $a \in \mathbb{C}$, and $b \in \mathbb{R} \setminus \lbrace 0 \rbrace$, are parametrised in terms of the monodromy data of an associated first-order $2 \times 2$ matrix linear ODE via the isomonodromy deformation approach: trans-series asymptotics for the associated Hamiltonian and principal auxiliary functions and the solution of one of the $\sigma$-forms of the DP3E are also obtained. The actions of various Lie-point symmetries for the DP3E are derived.
Key words: isomonodromy deformations; Stokes phenomena; symmetries.
pdf (2 mb)
tex (152 kb)
References
- Ahmed A., Dunne G.V., Transmutation of a trans-series: the Gross-Witten-Wadia phase transition, J. High Energy Phys. 2017 (2017), no. 11, 054, 51 pages, arXiv:1710.01812.
- Andreev F.V., Kitaev A.V., Exponentially small corrections to divergent asymptotic expansions of solutions of the fifth Painlevé equation, Math. Res. Lett. 4 (1997), 741-759.
- Aniceto I., Başar G., Schiappa R., A primer on resurgent transseries and their asymptotics, Phys. Rep. 809 (2019), 1-135, arXiv:1802.10441.
- Atkin M.R., Claeys T., Mezzadri F., Random matrix ensembles with singularities and a hierarchy of Painlevé III equations, Int. Math. Res. Not. 2016 (2016), 2320-2375, arXiv:1501.04475.
- Baldino S., Schiappa R., Schwick M., Vega R., Resurgent stokes data for Painlevé equations and two-dimensional quantum (super) gravity, Commun. Number Theory Phys. 17 (2023), 385-552, arXiv:2203.13726.
- Barhoumi A., Lisovyy O., Miller P.D., Prokhorov A., Painlevé-III monodromy maps under the $D_6\to D_8$ confluence and applications to the large-parameter asymptotics of rational solutions, SIGMA 20 (2024), 019, 77 pages, arXiv:2307.11217.
- Bilman D., Buckingham R., Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation, J. Nonlinear Sci. 29 (2019), 2185-2229, arXiv:1807.09058.
- Bilman D., Ling L., Miller P.D., Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy, Duke Math. J. 169 (2020), 671-760, arXiv:1806.00545.
- Bobenko A.I., Eitner U., Painlevé equations in the differential geometry of surfaces, Lecture Notes in Math., Vol. 1753, Springer, Berlin, 2000.
- Bolibruch A., Its A., Kapaev A., On the Riemann-Hilbert-Birkhoff inverse monodromy problem and the Painlevé equations, St. Petersburg Math. J. 16 (2005), 105-142.
- Bothner T., Miller P.D., Rational solutions of the Painlevé-III equation: large parameter asymptotics, Constr. Approx. 51 (2020), 123-224, arXiv:1808.01421.
- Brzeziński J., Galois theory through exercises, Springer Undergrad. Math. Ser., Springer, Cham, 2018.
- Buckingham R.J., Miller P.D., On the algebraic solutions of the Painlevé-III $(\rm D_7)$ equation, Phys. D 441 (2022), 133493, 22 pages, arXiv:2202.04217.
- Buckingham R.J., Miller P.D., Differential equations for approximate solutions of Painlevé equations: application to the algebraic solutions of the Painlevé-III $(\rm D_7)$ equation, SIGMA 20 (2024), 008, 27 pages, arXiv:2308.16051.
- Chen M., Chen Y., Fan E., Perturbed Hankel determinant, correlation functions and Painlevé equations, J. Math. Phys. 57 (2016), 023501, 31 pages, arXiv:1507.05261.
- Chen Y., Its A., Painlevé III and a singular linear statistics in Hermitian random matrix ensembles. I, J. Approx. Theory 162 (2010), 270-297, arXiv:0808.3590.
- Contatto F., Integrable Abelian vortex-like solitons, Phys. Lett. B 768 (2017), 23-29, arXiv:1612.01879.
- Contatto F., Dorigoni D., Instanton solutions from Abelian sinh-Gordon and Tzitzeica vortices, J. Geom. Phys. 98 (2015), 429-445, arXiv:1412.8312.
- Dai D., Xu S.X., Zhang L., Gap probability at the hard edge for random matrix ensembles with pole singularities in the potential, SIAM J. Math. Anal. 50 (2018), 2233-2279, arXiv:1710.08132.
- Deift P.A., Zhou X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337.
- Delabaere E., Divergent series, summability and resurgence III. Resurgent methods and the first Painlevé equation, Lecture Notes in Math., Vol. 2155, Springer, Cham, 2016.
- Dunajski M., Abelian vortices from sinh-Gordon and Tzitzeica equations, Phys. Lett. B 710 (2012), 236-239, arXiv:1201.0105.
- Dunajski M., Gavrea N., Elizabethan vortices, Nonlinearity 36 (2023), 4169-4186, arXiv:2301.06191.
- Dunajski M., Plansangkate P., Strominger-Yau-Zaslow geometry, affine spheres and Painlevé III, Comm. Math. Phys. 290 (2009), 997-1024, arXiv:0809.3015.
- Dunne G.V., Resurgence, Painlevé equations and conformal blocks, J. Phys. A 52 (2019), 463001, 31 pages, arXiv:1901.02076.
- Edgar G.A., Transseries for beginners, Real Anal. Exchange 35 (2010), 253-309, arXiv:0801.4877.
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. II, Robert E. Krieger Publishing, Melbourne, Fla., 1981.
- Fedoryuk M.V., Asymptotic analysis. Linear ordinary differential equations, Springer, Berlin, 1993.
- Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Y., Painlevé transcendents: The Riemann-Hilbert approach, Math. Surveys Monogr., Vol. 128, American Mathematical Society, Providence, RI, 2006.
- Garoufalidis S., Its A., Kapaev A., Mariño M., Asymptotics of the instantons of Painlevé I, Int. Math. Res. Not. 2012 (2012), 561-606, arXiv:1002.3634.
- Gavrylenko P., Lisovyy O., Pure ${\rm SU}(2)$ gauge theory partition function and generalized Bessel kernel, in String-Math 2016, Proc. Sympos. Pure Math., Vol. 98, American Mathematical Society, Providence, RI, 2018, 181-205, arXiv:1705.01869.
- Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 5th ed., Academic Press, Boston, MA, 1994.
- Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Stud. Math., Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
- Guest M.A., Hertling C., Painlevé III: a case study in the geometry of meromorphic connections, Lecture Notes in Math., Vol. 2198, Springer, Cham, 2017.
- Guest M.A., Its A.R., Lin C.S., Isomonodromy aspects of the $\rm tt^*$ equations of Cecotti and Vafa I. Stokes data, Int. Math. Res. Not. 2015 (2015), 11745-11784, arXiv:1209.2045.
- Guest M.A., Its A.R., Lin C.S., Isomonodromy aspects of the tt* equations of Cecotti and Vafa II: Riemann-Hilbert problem, Comm. Math. Phys. 336 (2015), 337-380, arXiv:1312.4825.
- Guest M.A., Its A.R., Lin C.S., Isomonodromy aspects of the tt* equations of Cecotti and Vafa III: Iwasawa factorization and asymptotics, Comm. Math. Phys. 374 (2020), 923-973, arXiv:1707.00259.
- Guest M.A., Its A.R., Lin C.S., The tt*-Toda equations of $A_{n}$ type, arXiv:2302.04597.
- Hildebrand R., Self-associated three-dimensional cones, Beitr. Algebra Geom. 63 (2022), 867-906, arXiv:1806.06588.
- Hille E., Ordinary differential equations in the complex domain, Dover Publications, Mineola, NY, 1997.
- Its A.R., ''Isomonodromic'' solutions of equations of zero curvature, Math. USSR Izv. 26 (1986), 497-529.
- Its A.R., Fokas A.S., Kapaev A.A., On the asymptotic analysis of the Painlevé equations via the isomonodromy method, Nonlinearity 7 (1994), 1291-1325.
- Its A.R., Kapaev A.A., Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution, J. Phys. A 31 (1998), 4073-4113.
- Its A.R., Kapaev A.A., Quasi-linear Stokes phenomenon for the second Painlevé transcendent, Nonlinearity 16 (2003), 363-386, arXiv:nlin/0108010.
- Its A.R., Novokshenov V.Yu., The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Math., Vol. 1191, Springer, Berlin, 1986.
- Iwaki K., Voros coefficients of the third Painlevé equation and parametric Stokes phenomena, arXiv:1303.3603.
- Iwaki K., On WKB theoretic transformations for Painlevé transcendents on degenerate Stokes segments, Publ. Res. Inst. Math. Sci. 51 (2015), 1-57, arXiv:1312.1874.
- Janson S., Roots of polynomials of degrees $3$ and $4$, arXiv:1009.2373.
- Joshi N., Lustri C.J., Luu S., Stokes phenomena in discrete Painlevé II, Proc. A. 473 (2017), 20160539, 20 pages, arXiv:1607.04494.
- Kapaev A.A., Quasi-linear Stokes phenomenon for the Painlevé first equation, J. Phys. A 37 (2004), 11149-11167, arXiv:nlin/0404026.
- Kapaev A.A., Quasi-linear Stokes phenomenon for the Hastings-McLeod solution of the second Painlevé equation, arXiv:nlin.SI/0411009.
- Kitaev A.V., The method of isomonodromic deformations and the asymptotics of the solutions of the ''complete'' third Painlevé equation, Math. USSR Izv. 31 (1988), 193-207.
- Kitaev A.V., Method of isomonodromic deformations for the ''degenerate'' third Painlevé equation, J. Sov. Math. 46 (1989), 2077-2083.
- Kitaev A.V., The justification of asymptotic formulas that can be obtained by the method of isomonodromic deformations, J. Sov. Math. 57 (1991), 3131-3135.
- Kitaev A.V., Elliptic asymptotics of the first and second Painlevé transcendents, Russian Math. Surveys 49 (1994), 81-150.
- Kitaev A.V., Meromorphic solution of the degenerate third Painlevé equation vanishing at the origin, SIGMA 15 (2019), 046, 53 pages, arXiv:1809.00122.
- Kitaev A.V., Vartanian A., Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: II, Inverse Problems 26 (2010), 105010, 58 pages, arXiv:1005.2677.
- Kitaev A.V., Vartanian A., Asymptotics of integrals of some functions related to the degenerate third Painlevé equation, J. Math. Sci. 242 (2019), 715-721.
- Kitaev A.V., Vartanian A., Algebroid solutions of the degenerate third Painlevé equation for vanishing formal monodromy parameter, J. Math. Anal. Appl. 532 (2024), 127917, 86 pages, arXiv:2304.05671.
- Kitaev A.V., Vartanian A., One-parameter meromorphic solution of the degenerate third Painlevé equation with formal monodromy parameter $a = \pm {\rm i}/2$ vanishing at the origin, J. Math. Sci. 284 (2024), 700-725, arXiv:2305.17278.
- Kitaev A.V., Vartanian A.H., Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I, Inverse Problems 20 (2004), 1165-1206, arXiv:math.CA/0312075.
- Lin Y., Dai D., Tibboel P., Existence and uniqueness of tronquée solutions of the third and fourth Painlevé equations, Nonlinearity 27 (2014), 171-186, arXiv:1306.1317.
- Loday-Richaud M., Divergent series, summability and resurgence II. Simple and multiple summability, Lecture Notes in Math., Vol. 2154, Springer, Cham, 2016.
- Miller P.D., On the increasing tritronquée solutions of the Painlevé-II equation, SIGMA 14 (2018), 125, 38 pages, arXiv:1804.03173.
- Murata Y., Classical solutions of the third Painlevé equation, Nagoya Math. J. 139 (1995), 37-65.
- Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$, J. Math. Sci. Univ. Tokyo 13 (2006), 145-204.
- Olde Daalhuis A.B., Exponentially-improved asymptotics and numerics for the (un)perturbed first Painlevé equation, J. Phys. A 55 (2022), 304004, 16 pages, arXiv:2205.12800.
- Shimomura S., Truncated solutions of the fifth Painlevé equation, Funkcial. Ekvac. 54 (2011), 451-471.
- Shimomura S., Series expansions of Painlevé transcendents near the point at infinity, Funkcial. Ekvac. 58 (2015), 277-319.
- Shimomura S., Three-parameter solutions of the PV Schlesinger-type equation near the point at infinity and the monodromy data, SIGMA 14 (2018), 113, 50 pages, arXiv:1804.10369.
- Shimomura S., Elliptic asymptotic representation of the fifth Painlevé transcendents, Kyushu J. Math. 76 (2022), 43-99, arXiv:2012.07321.
- Shimomura S., Boutroux ansatz for the degenerate third Painlevé transcendents, Publ. Res. Inst. Math. Sci. 60 (2024), 651-698, arXiv:2207.11495.
- Shimomura S., Elliptic asymptotics for the complete third Painlevé transcendents, Funkcial. Ekvac. 68 (2025), 69-117, arXiv:2211.00886.
- Steinmetz N., Nevanlinna theory, normal families, and algebraic differential equations, Universitext, Springer, Cham, 2017.
- Suleimanov B.I., Effect of a small dispersion on self-focusing in a spatially one-dimensional case, JETP Lett. 106 (2017), 400-405.
- Takei Y., On the role of the degenerate third Painlevé equation of type $(D8)$ in the exact WKB analysis, in Exact WKB Analysis and Microlocal Analysis, RIMS K^okyûroku Bessatsu, Vol. B37, Research Institute for Mathematical Sciences, Kyoto, 2013, 211-222.
- Tracy C.A., Widom H., Asymptotics of a class of solutions to the cylindrical Toda equations, Comm. Math. Phys. 190 (1998), 697-721, arXiv:solv-int/9701003.
- van Spaendonck A., Vonk M., Painlevé I and exact WKB: Stokes phenomenon for two-parameter transseries, J. Phys. A 55 (2022), 454003, 64 pages, arXiv:2204.09062.
- Wakako H., Takei Y., Exact WKB analysis for the degenerate third Painlevé equation of type $(D_8)$, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 63-68.
- Wasow W., Linear turning point theory, Appl. Math. Sci., Vol. 54, Springer, New York, 1985.
- Xia X., Tronquée solutions of the third and fourth Painlevé equations, SIGMA 14 (2018), 095, 28 pages, arXiv:1803.11230.
- Xu S.X., Dai D., Zhao Y.Q., Critical edge behavior and the Bessel to Airy transition in the singularly perturbed Laguerre unitary ensemble, Comm. Math. Phys. 332 (2014), 1257-1296, arXiv:1309.4354.
- Xu S.X., Dai D., Zhao Y.Q., Painlevé III asymptotics of Hankel determinants for a singularly perturbed Laguerre weight, J. Approx. Theory 192 (2015), 1-18, arXiv:1407.7334.
|
|