Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 073, 30 pages      arXiv:2304.00699      https://doi.org/10.3842/SIGMA.2025.073

$\widehat{Z}$ and Splice Diagrams

Sergei Gukov a, Ludmil Katzarkov b and Josef Svoboda a
a) Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
b) Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

Received November 22, 2024, in final form August 16, 2025; Published online August 26, 2025

Abstract
We study quantum $q$-series invariants of 3-manifolds $\widehat{Z}_\sigma$ of Gukov-Pei-Putrov-Vafa, using techniques from the theory of normal surface singularities such as splice diagrams. We show that the (suitably normalized) sum of all $\widehat{Z}_\sigma$ depends only on the splice diagram, and in particular, it agrees for manifolds with the same universal abelian cover. We use these ideas to find simple formulas for $\widehat{Z}_\sigma$ invariants of Seifert manifolds. Applications include a better understanding of the vanishing of the $q$-series $\widehat{Z}_\sigma$. Additionally, we study moduli spaces of flat $\operatorname{SL}_2(\mathbb{C})$ connections on Seifert manifolds and their relation to spectra of surface singularities, extending a result of Boden and Curtis for Brieskorn spheres to Seifert rational homology spheres with 3 singular fibers and to Seifert homology spheres with any number of fibers.

Key words: 3-manifold topology; quantum invariant; surface singularity; splice diagram.

pdf (744 kb)   tex (345 kb)  

References

  1. Abouzaid M., Manolescu C., A sheaf-theoretic model for $\operatorname{\operatorname{SL}}(2,\mathbb{C})$ Floer homology, J. Eur. Math. Soc. 22 (2020), 3641-3695, arXiv:1708.00289.
  2. Akhmechet R., Johnson P.K., Krushkal V., Lattice cohomology and $q$-series invariants of 3-manifolds, J. Reine Angew. Math. 796 (2023), 269-299, arXiv:2109.14139.
  3. Andersen J.E., Mistegaard W.E., Resurgence analysis of quantum invariants of Seifert fibered homology spheres, J. Lond. Math. Soc. 105 (2022), 709-764, arXiv:1811.05376.
  4. Boden H.U., Curtis C.L., The $\operatorname{\operatorname{SL}}_2(\mathbb C)$ Casson invariant for Seifert fibered homology spheres and surgeries on twist knots, J. Knot Theory Ramifications 15 (2006), 813-837, arXiv:math.GT/0602023.
  5. Boden H.U., Yokogawa K., Moduli spaces of parabolic Higgs bundles and parabolic $K(D)$ pairs over smooth curves. I, Internat. J. Math. 7 (1996), 573-598, arXiv:alg-geom/9610014.
  6. Bringmann K., Mahlburg K., Milas A., Higher depth quantum modular forms and plumbed 3-manifolds, Lett. Math. Phys. 110 (2020), 2675-2702, arXiv:1906.10722.
  7. Chae J., A cable knot and BPS-series, SIGMA 19 (2023), 002, 12 pages, arXiv:2101.11708.
  8. Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages, arXiv:1809.10148.
  9. Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., Passaro D., 3-manifolds and VOA characters, Comm. Math. Phys. 405 (2024),, arXiv:2201.04640.
  10. Cheng M.C.N., Ferrari F., Sgroi G., Three-manifold quantum invariants and mock theta functions, Philos. Trans. Roy. Soc. A 378 (2020), 20180439, 15 pages, arXiv:1912.07997.
  11. Chun S., A resurgence analysis of the ${\rm SU}(2)$ Chern-Simons partition functions on a Brieskorn homology sphere ${\Sigma}(2,5,7)$, arXiv:1701.03528.
  12. Chun S., Gukov S., Park S., Sopenko N., 3d-3d correspondence for mapping tori, J. High Energy Phys. 2020 (2020), no. 9, 152, 59 pages, arXiv:1911.08456.
  13. Chung H.-J., Resurgent analysis for some 3-manifold invariants, J. High Energy Phys. 2021 (2021), no. 5, 106, 39 pages, arXiv:2008.02786.
  14. Chung H.-J., BPS invariants for a knot in Seifert manifolds, J. High Energy Phys. 2022 (2022), no. 12, 122, 23 pages, arXiv:2201.08351.
  15. Cui S.X., Qiu Y., Wang Z., From three dimensional manifolds to modular tensor categories, Comm. Math. Phys. 397 (2023), 1191-1235, arXiv:2101.01674.
  16. Curtis C.L., An intersection theory count of the $\operatorname{\operatorname{SL}}_2({\mathbb C})$-representations of the fundamental group of a $3$-manifold, Topology 40 (2001), 773-787.
  17. Donaldson S.K., Thomas R.P., Gauge theory in higher dimensions, in The Geometric Universe (Oxford, 1996), Oxford University Press, Oxford, 1998, 31-47.
  18. Ebeling W., Steenbrink J.H.M., Spectral pairs for isolated complete intersection singularities, J. Algebraic Geom. 7 (1998), 55-76.
  19. Eisenbud D., Neumann W., Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., Vol. 110, Princeton University Press, Princeton, NJ, 1985.
  20. Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Stošić M., Sułkowski P., Branches, quivers, and ideals for knot complements, J. Geom. Phys. 177 (2022), 104520, 75 pages, arXiv:2110.13768.
  21. Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sułkowski P., $\widehat{Z}$ at large $N$: from curve counts to quantum modularity, Comm. Math. Phys. 396 (2022), 143-186, arXiv:2005.13349.
  22. Feigin B., Gukov S., ${\rm VOA}[M_4]$, J. Math. Phys. 61 (2020), 012302, 27 pages, arXiv:1806.02470.
  23. Fichou G., Yin Y., Motivic integration and Milnor fiber, J. Eur. Math. Soc. 24 (2022), 1617-1678, arXiv:1810.03561.
  24. Fintushel R., Stern R.J., Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61 (1990), 109-137.
  25. Fuji H., Gukov S., Stosic M., Sulkowski P., 3d analogs of Argyres-Douglas theories and knot homologies, J. High Energy Phys. 2013 (2013), no. 1, 175, 28 pages, arXiv:1209.1416.
  26. Gadde A., Gukov S., Putrov P., Walls, lines, and spectral dualities in 3d gauge theories, J. High Energy Phys. 2014 (2014), no. 5, 047, 55 pages, arXiv:1302.0015.
  27. Gadde A., Gukov S., Putrov P., Fivebranes and 4-manifolds, in Arbeitstagung Bonn 2013, Progr. Math., Vol. 319, Birkhäuser, Cham, 2016, 155-245, arXiv:1306.4320.
  28. Gopakumar R., Vafa C., M-theory and topological strings-II, arXiv:hep-th/9812127.
  29. Gukov S., Manolescu C., A two-variable series for knot complements, Quantum Topol. 12 (2021), 1-109, arXiv:1904.06057.
  30. Gukov S., Marino M., Putrov P., Resurgence in complex Chern-Simons theory, arXiv:1605.07615.
  31. Gukov S., Nawata S., Saberi I., Stošić M., Sułkowski P., Sequencing BPS spectra, J. High Energy Phys. (2016), no. 3, 004, 160 pages, arXiv:1512.07883.
  32. Gukov S., Park S., Putrov P., Cobordism invariants from BPS $q$-series, Ann. Henri Poincaré 22 (2021), 4173-4203, arXiv:2009.11874.
  33. Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
  34. Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, 071, 80 pages, arXiv:1602.05302.
  35. Gukov S., Sheshmani A., Yau S.-T., 3-manifolds and Vafa-Witten theory, Adv. Theor. Math. Phys. 27 (2023), 523-561, arXiv:2207.05775.
  36. Hamm H.A., Exotische Sphären als Umgebungsränder in speziellen komplexen Räumen, Math. Ann. 197 (1972), 44-56.
  37. Katz S., Gromov-Witten, Gopakumar-Vafa, and Donaldson-Thomas invariants of Calabi-Yau threefolds, in Snowbird Lectures on String Geometry, Contemp. Math., Vol. 401, American Mathematical Society, Providence, RI, 2006, 43-52, arXiv:math.AG/0408266.
  38. Katzarkov L., Kontsevich M., Pantev T., Hodge theoretic aspects of mirror symmetry, in From Hodge Theory to Integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., Vol. 78, American Mathematical Society, Providence, RI, 2008, 87-174, arXiv:0806.0107.
  39. Kuznetsov A., Hochschild homology and semiorthogonal decompositions, arXiv:0904.4330.
  40. Looijenga E.J.N., Isolated singular points on complete intersections, London Math. Soc. Lecture Note Ser., Vol. 77, Cambridge University Press, Cambridge, 1984.
  41. Matsusaka T., Terashima Y., Modular transformations of homological blocks for Seifert fibered homology 3-spheres, Comm. Math. Phys. 405 (2024), 48, 25 pages, arXiv:2112.06210.
  42. Maulik D., Nekrasov N., Okounkov A., Pandharipande R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), 1263-1285, arXiv:math.AG/0312059.
  43. Milnor J., Singular points of complex hypersurfaces, Ann. of Math. Stud., Vol. 61, Princeton University Press, Princeton, NJ, 1968.
  44. Muñoz Echániz J., Counting $\operatorname{SL}(2,\mathbb{C})$ connections on Seifert-fibered spaces, arXiv:2503.16370.
  45. Murakami H., Quantum $\operatorname{SO}(3)$-invariants dominate the $\operatorname{ SU}(2)$-invariant of Casson and Walker, Math. Proc. Cambridge Philos. Soc. 117 (1995), 237-249.
  46. Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
  47. Némethi A., Normal surface singularities, Ergeb. Math. Grenzgeb., Vol. 74, Springer, Cham, 2022.
  48. Némethi A., Nicolaescu L.I., Seiberg-Witten invariants and surface singularities, Geom. Topol. 6 (2002), 269-328, arXiv:math.AG/0111298.
  49. Némethi A., Okuma T., On the Casson invariant conjecture of Neumann-Wahl, J. Algebraic Geom. 18 (2009), 135-149, arXiv:math.AG/0610465.
  50. Neumann W.D., A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-344.
  51. Neumann W.D., Abelian covers of quasihomogeneous surface singularities, in Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Vol. 40, American Mathematical Society, Providence, RI, 1983, 233-243.
  52. Neumann W.D., Graph 3-manifolds, splice diagrams, singularities, in Singularity Theory, World Scientific Publishing, 2007, 787-817.
  53. Neumann W.D., Wahl J.M., Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990), 58-78.
  54. Neumann W.D., Wahl J.M., Complete intersection singularities of splice type as universal abelian covers, Geom. Topol. 9 (2005), 699-755, arXiv:math.AG/0407287.
  55. Ohtsuki T., A polynomial invariant of rational homology $3$-spheres, Invent. Math. 123 (1996), 241-257.
  56. Ooguri H., Vafa C., Knot invariants and topological strings, Nuclear Phys. B 577 (2000), 419-438, arXiv:hep-th/9912123.
  57. Park S., Higher rank $\hat{Z}$ and $F_K$, SIGMA 16 (2020), 044, 17 pages, arXiv:1909.13002.
  58. Park S., Large color $R$-matrix for knot complements and strange identities, J. Knot Theory Ramifications 29 (2020), 2050097, 32 pages, arXiv:2004.02087.
  59. Park S., Inverted state sums, inverted Habiro series, and indefinite theta functions, arXiv:2106.03942.
  60. Pedersen H.M., Splice diagrams. Singularity links and universal abelian covers, Ph.D. Thesis, Columbia University, 2009, http://www.math.columbia.edu/ thaddeus/theses/2009/pedersen.pdf.
  61. Ri S.J., Refined and generalized $\hat{Z}$ invariants for plumbed 3-manifolds, SIGMA 19 (2023), 011, 27 pages, arXiv:2205.08197.
  62. Rizell G.D., Ekholm T., Tonkonog D., Refined disk potentials for immersed Lagrangian surfaces, J. Differential Geom. 121 (2022), 459-539, arXiv:1806.03722.
  63. Sabbah C., Non-commutative Hodge structures, Ann. Inst. Fourier (Grenoble) 61 (2011), 2681-2717, arXiv:1107.5890.
  64. Siebenmann L., On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology $3$-spheres, in Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., Vol. 788, Springer, Berlin, 1980, 172-222.
  65. Simpson C., Mixed twistor structures, arXiv:alg-geom/9705006.
  66. Soibelman Y., Holomorphic Floer theory, wall-crossing structures and Chern-Simons theory, Talk at Homological Mirror Symmetry, Miami, 2023, https://www.imsa.miami.edu/events/2023-winter-emphasis/hms/index.html.
  67. Steenbrink J.H.M., Semicontinuity of the singularity spectrum, Invent. Math. 79 (1985), 557-565.
  68. Sugimoto S., Atiyah-Bott formula and homological block of Seifert fibered homology 3-spheres, arXiv:2208.05689.
  69. Walker K., An extension of Casson's invariant, Ann. of Math. Stud., Vol. 126, Princeton University Press, Princeton, NJ, 1992.
  70. Wu D.H., Resurgent analysis of $\operatorname{SU}(2)$ Chern-Simons partition function on Brieskorn spheres $\Sigma(2, 3, 6n + 5)$, J. High Energy Phys. 2021 (2021), no. 2, 008, 18 pages, arXiv:2010.13736.

Previous article  Next article  Contents of Volume 21 (2025)