Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 22 (2026), 014, 18 pages      arXiv:2506.19509      https://doi.org/10.3842/SIGMA.2026.014
Contribution to the Special Issue on Interactions of Poisson Geometry, Lie Theory and Symmetry in honor of Rui Loja Fernandes

The Linearizability of Singular Foliations Is a Morita Invariant

Marco Zambon
KU Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, 3001 Leuven, Belgium

Received September 25, 2025, in final form February 05, 2026; Published online February 17, 2026

Abstract
Hausdorff Morita equivalence is an equivalence relation on singular foliations, which induces a bijection between their leaves. Our main statement is that linearizability along a leaf is invariant under Hausdorff Morita equivalence. The proof relies on a characterization of tubular neighborhood embeddings using Euler-like vector fields.

Key words: singular foliation; Morita equivalence; linearization; Euler-like vector field.

pdf (592 kb)   tex (27 kb)  

References

  1. Androulidakis I., Skandalis G., The holonomy groupoid of a singular foliation, J. Reine Angew. Math. 626 (2009), 1-37, arXiv:math.DG/0612370.
  2. Androulidakis I., Zambon M., Smoothness of holonomy covers for singular foliations and essential isotropy, Math. Z. 275 (2013), 921-951, arXiv:1111.1327.
  3. Androulidakis I., Zambon M., Holonomy transformations for singular foliations, Adv. Math. 256 (2014), 348-397, arXiv:1205.6008.
  4. Androulidakis I., Zambon M., Stefan-Sussmann singular foliations, singular subalgebroids and their associated sheaves, Int. J. Geom. Methods Mod. Phys. 13 (2016), 1641001, 17 pagges.
  5. Bischoff F., Bursztyn H., Lima H., Meinrenken E., Deformation spaces and normal forms around transversals, Compos. Math. 156 (2020), 697-732, arXiv:1807.11153.
  6. Bursztyn H., Lima H., Meinrenken E., Splitting theorems for Poisson and related structures, J. Reine Angew. Math. 754 (2019), 281-312, arXiv:1605.05386.
  7. Cerveau D., Distributions involutives singulières, Ann. Inst. Fourier (Grenoble) 29 (1979), 261-294.
  8. Crainic M., Struchiner I., On the linearization theorem for proper Lie groupoids, Ann. Sci. Éc. Norm. Supér. 46 (2013), 723-746, arXiv:1103.5245.
  9. del Hoyo M.L., Lie groupoids and their orbispaces, Port. Math. 70 (2013), 161-209, arXiv:1212.6714.
  10. Fischer S.-R., Laurent-Gengoux C., A classification of neighborhoods around leaves of a singular foliation, arXiv:2401.05966.
  11. Francis M., On singular foliations tangent to a given hypersurface, J. Noncommut. Geom., to appear, arXiv:2311.03940.
  12. Garmendia A., Groupoids and singular foliations, Ph.D. Thesis, KU Leuven, 2019, available at https://perswww.kuleuven.be/~u0096206/students/thesisAlfonsoFInal.pdf, arXiv:2107.10502.
  13. Garmendia A., Yudilevich O., On the inner automorphisms of a singular foliation, Math. Z. 293 (2019), 725-729, arXiv:1804.06103.
  14. Garmendia A., Zambon M., Hausdorff Morita equivalence of singular foliations, Ann. Global Anal. Geom. 55 (2019), 99-132, arXiv:1803.00896.
  15. Haj Saeedi Sadegh A.R., Higson N., Euler-like vector fields, deformation spaces and manifolds with filtered structure, Doc. Math. 23 (2018), 293-325, arXiv:1611.05312.
  16. Laurent-Gengoux C., Louis R., Ryvkin L., An invitation to singular foliations, Advanced Courses in Mathematics - CRM Barcelona, 2024, arXiv:2407.14932.
  17. Laurent-Gengoux C., Ryvkin L., The neighborhood of a singular leaf, J. Éc. Polytech. Math. 8 (2021), 1037-1064, arXiv:2004.07019.
  18. Louis R., On symmetries of singular foliations, J. Geom. Phys. 189 (2023), 104833, 31 pages, arXiv:2203.01585.
  19. Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser., Vol. 213, Cambridge University Press, Cambridge, 2005.
  20. Meinrenken E., Euler-like vector fields, normal forms, and isotropic embeddings, Indag. Math. (N.S.) 32 (2021), 224-245, arXiv:2001.10518.
  21. Mărcuţ I., Normal forms in Poisson geometry, Ph.D. Thesis, Utrecht University, 2013, arXiv:1301.4571.
  22. Witte A., The cohomology of the elliptic tangent bundle, Indag. Math. (N.S.) 33 (2022), 372-387, arXiv:2104.04845.

Previous article  Next article  Contents of Volume 22 (2026)