|
SIGMA 22 (2026), 014, 18 pages arXiv:2506.19509
https://doi.org/10.3842/SIGMA.2026.014
Contribution to the Special Issue on Interactions of Poisson Geometry, Lie Theory and Symmetry in honor of Rui Loja Fernandes
The Linearizability of Singular Foliations Is a Morita Invariant
Marco Zambon
KU Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, 3001 Leuven, Belgium
Received September 25, 2025, in final form February 05, 2026; Published online February 17, 2026
Abstract
Hausdorff Morita equivalence is an equivalence relation on singular foliations, which induces a bijection between their leaves. Our main statement is that linearizability along a leaf is invariant under Hausdorff Morita equivalence. The proof relies on a characterization of tubular neighborhood embeddings using Euler-like vector fields.
Key words: singular foliation; Morita equivalence; linearization; Euler-like vector field.
pdf (592 kb)
tex (27 kb)
References
- Androulidakis I., Skandalis G., The holonomy groupoid of a singular foliation, J. Reine Angew. Math. 626 (2009), 1-37, arXiv:math.DG/0612370.
- Androulidakis I., Zambon M., Smoothness of holonomy covers for singular foliations and essential isotropy, Math. Z. 275 (2013), 921-951, arXiv:1111.1327.
- Androulidakis I., Zambon M., Holonomy transformations for singular foliations, Adv. Math. 256 (2014), 348-397, arXiv:1205.6008.
- Androulidakis I., Zambon M., Stefan-Sussmann singular foliations, singular subalgebroids and their associated sheaves, Int. J. Geom. Methods Mod. Phys. 13 (2016), 1641001, 17 pagges.
- Bischoff F., Bursztyn H., Lima H., Meinrenken E., Deformation spaces and normal forms around transversals, Compos. Math. 156 (2020), 697-732, arXiv:1807.11153.
- Bursztyn H., Lima H., Meinrenken E., Splitting theorems for Poisson and related structures, J. Reine Angew. Math. 754 (2019), 281-312, arXiv:1605.05386.
- Cerveau D., Distributions involutives singulières, Ann. Inst. Fourier (Grenoble) 29 (1979), 261-294.
- Crainic M., Struchiner I., On the linearization theorem for proper Lie groupoids, Ann. Sci. Éc. Norm. Supér. 46 (2013), 723-746, arXiv:1103.5245.
- del Hoyo M.L., Lie groupoids and their orbispaces, Port. Math. 70 (2013), 161-209, arXiv:1212.6714.
- Fischer S.-R., Laurent-Gengoux C., A classification of neighborhoods around leaves of a singular foliation, arXiv:2401.05966.
- Francis M., On singular foliations tangent to a given hypersurface, J. Noncommut. Geom., to appear, arXiv:2311.03940.
- Garmendia A., Groupoids and singular foliations, Ph.D. Thesis, KU Leuven, 2019, available at https://perswww.kuleuven.be/~u0096206/students/thesisAlfonsoFInal.pdf, arXiv:2107.10502.
- Garmendia A., Yudilevich O., On the inner automorphisms of a singular foliation, Math. Z. 293 (2019), 725-729, arXiv:1804.06103.
- Garmendia A., Zambon M., Hausdorff Morita equivalence of singular foliations, Ann. Global Anal. Geom. 55 (2019), 99-132, arXiv:1803.00896.
- Haj Saeedi Sadegh A.R., Higson N., Euler-like vector fields, deformation spaces and manifolds with filtered structure, Doc. Math. 23 (2018), 293-325, arXiv:1611.05312.
- Laurent-Gengoux C., Louis R., Ryvkin L., An invitation to singular foliations, Advanced Courses in Mathematics - CRM Barcelona, 2024, arXiv:2407.14932.
- Laurent-Gengoux C., Ryvkin L., The neighborhood of a singular leaf, J. Éc. Polytech. Math. 8 (2021), 1037-1064, arXiv:2004.07019.
- Louis R., On symmetries of singular foliations, J. Geom. Phys. 189 (2023), 104833, 31 pages, arXiv:2203.01585.
- Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser., Vol. 213, Cambridge University Press, Cambridge, 2005.
- Meinrenken E., Euler-like vector fields, normal forms, and isotropic embeddings, Indag. Math. (N.S.) 32 (2021), 224-245, arXiv:2001.10518.
- Mărcuţ I., Normal forms in Poisson geometry, Ph.D. Thesis, Utrecht University, 2013, arXiv:1301.4571.
- Witte A., The cohomology of the elliptic tangent bundle, Indag. Math. (N.S.) 33 (2022), 372-387, arXiv:2104.04845.
|
|