Koshmanenko Volodymyr Dmytro

Koshmanenko Volodymyr Dmytro



Publications

    T. V. Karataieva1 and V. D. Koshmanenko. Equilibrium states of the dynamic conflict system for three players with a parameter of influence of the ambient environment.
    Journal of Mathematical Sciences. -- 2023, Vol. 274, No. 6, 861 - 880.
    DOI 10.1007/s10958-023-06649-x

    Volodymyr Koshmanenko, Tetyana Karataieva. About compromise states in the battle of opponents with various
    external support. Intern. scient. conf.
    «MATHEMATICS AND INFORMATION TECHNOLOGIES», Chernivtsi, (2023), 73 - 76.

    Volodymyr Koshmanenko.
    The conflict problem in terms of stochastic matrices. Workshop “Complex Dynamical Systems: theory, mathematical modelling, computing and application”, (2023)

    T. V. Karataieva1 and V. D. Koshmanenko.²ñíóâàííÿ êîìïðîì³ñíèõ ñòàí³â ó áîðîòüá³ àëüòåðíàòèâíèõ îïîíåíò³â ïðè íàÿâíîñò³ çîâí³øíüî¿ äîïîìîãè. // Íåëiíiéíi êîëèâàííÿ. -- 2023, ò. 26, ¹ 3, 363 - 385 (2023).
    DOI: 10.3842/nosc.v26i3.1431



    Volodymyr Koshmanenko, Viktoria Voloshyna, The emergence of point spectrum in models of conflict dynamical systems, Ukrainian Math. J. - 2018. - 70, ¹ 12. - Ñ. 1615-1624.pdf

    T. Karataieva, V. Koshmanenko, M. Krawczyk, K. Kulakowski, "Mean field model of a game for power" , sent to Acta Physica Polonica A, 15 p. (2017). (Feb 2018, https://arxiv.org/pdf/1802.02860.pdf)

    V. Koshmanenko, N. Kharchenko,
    Fixed points of complex systems with attractive interaction, MFAT, {\bf 23}, no. 2, 164 - 176, (2017).
    pdf

    T.V. Karataeva and V.D. Koshmanenko, MODEL OF A DYNAMICAL SYSTEM OF THE “FIRE–WATER” CONFLICT TYPE. Journal of Mathematical Sciences, Vol. 208, No. 5, August, 2015. pdf

    Koshmanenko V., Dudkin M., The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators, Operator Theory: Advance and Applications, 253, Birkh\ddot{a}auser, 2016.



    Koshmanenko, V. Spectral Theory for Conflict Dynamical Systems (Ukrainian), Naukova Dumka, Kyiv, 2016, 288p.

    Koshmanenko, V.; Dudkin M. Method of Rigged Spaces in Singular Perturbation Theory of Self-adjoint Operators. Birkhäuser, 2016, 237p.

    Koshmanenko V., Verygina I. Dynamical systems of conflict in terms of structural measures. Meth. Funct. Anal. and Top. 22, No 1, 81-93, (2016).
    pdf

    Koshmanenko, V. Existence theorems of the omega-limit states for conflict dynamical systems, Methods Funct. Anal. and Top. 20, No. 4, 379-390, (2014).


    M. E. Dudkin, V. D. Koshmanenko, Nonzero capacity sets and dense subspaces in scales of the Sobolev spaces, Methods Funct. Anal.
    Topology, 20, No. 3, 213-218, (2014).


    Koshmanenko, V.; Samoilenko, I. The conflict triad dynamical system. Commun. Nonlinear Sci. Numer. Simul. 16, No. 7, 2917–2935 (2011).

    Albeverio, S., Konstantinov, A., Koshmanenko, V. Remarks on the Inverse Spectral Theory for Singularly Perturbed Operators, Operator Theory: Advance and Appl., 190, 115–122 (2009).


    V. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Kluwer, Dordrecht, 1999.

    V. Koshmanenko, A variant of the inverse negative eigenvalues problem in singular perturbation theory, Methods of Functional Analysis and Topology, 8, 1, 49-69, 2002, MR1903129 href="http://www.imath.kiev.ua/~kosh/Papers/Koshman%28InversProblem%29.pdf">pdf.

    V. Koshmanenko, A theorem on conflict for a pair of stochastic vectors, Ukrainian Math. J., 55, No 4, 671–678 , 2003, MR2072559 pdf.

    V. Koshmanenko, The Theorem of Conflict for a pair of Probability Measures, Math. Methods of Operations Research, 59, No.2, 303--313, 2004 pdf.

    V. Koshmanenko, Construction of singular perturbations by the method of rigged Hilbert spaces, Journal of Phisics A: Mathematical and General, 38, 4999-5009, 2005.
    S. Albeverio, V. Koshmanenko, A.Konstantinov, On inverse spectral theory for singularly perturbed operator: point spectrum, Inverse Problems, 21, 1871-1878, (2005).

    V. Koshmanenko, Construction of singular perturbations by the method of rigged Hilbert spaces, Journal of Physics A: Mathematical and General, 38,
    4999-5009, (2005).

    S. Albeverio, R. Bozhok, M.Dudkin, V. Koshmanenko, Dense subspace in scales of Hilbert spaces, Methods of Functional Analysis and Topology, 11, no.~2, 156--169, (2005)

    R. Bozhok, V. Koshmanenko, Singular perturbations of self-adjoint operators associated with rigged Hilbert spaces, Ukr. Math. J., 57, No. 5, 622-632,
    (2005)

    S. Albeverio, V. Koshmanenko, Ì. Pratsiovytyi, G. Torbin, Spectral properties of image measures under infinite conflict interactions,
    Positivity, 10, 39-49, (2006) pdf.

    V. Koshmanenko, H. Tuhai, Jacobi matrices associated with the inverse eigenvalue problem in the theory of singular perturbations of self-adjoint
    operators, Ukrainian Math. J., Vol. 58, No. 12 (2006).

    S. Albeverio, R.Bozhok, V. Koshmanenko, The rigged Hilbert spaces approach in singular perturbation theory, Reports of Math. Phys., 58, No.2, 227-246,
    (2006) pdf.

    M.V. Bodnarchuk, V. Koshmanenko, I. Samoilenko, Dynamics of conflict interactions between systems with internal structure, Nonlinear Oscillations, 9:4, 423-437, (2007).

    S. Albeverio, M.Dudkin, V. Koshmanenko, A.Konstantinov. On the point spectrum of
    H{-2}class singular perturbations, Math. Nachr. 208, No. 1-2, 20-27, (2007).

    V. Koshmanenko, Reconstruction of the spectral type of limiting distributions in dynamical conflict systems, Ukrainian Math. J., Vol. 59, No. 6, 771-784 (2007)

    R.V. Bozhok and V.D. Koshmanenko Parametrization of Supersingular Perturbations in the Method of Rigged Hilbert Spaces, Russion J. Math. Phys., 14, 4, 409-416, 2007, MR2366197 pdf.


    S. Albeverio, V. Koshmanenko. I. Samoilenko, The conflict interaction between two complex systems: Cyclic migration, J. Interdisciplinary Math., 11, No 2,
    163-185, (2008) pdf .

    S. Albeverio, A. Konstantinov, and V. Koshmanenko, Remarks on the Inverse Spectral Theory for Singularly
    Perturbed Operators, Operator Theory: Advance and Appl.,
    190, 115-122, 2009, MR2568625 pdf.


    V. Koshmanenko, I. Samoilenko, The conflict triad dynamical system, Commun Nonlinear Sci Numer Simulat, 16, 2917-2935 (2011) pdf.

    V. Koshmanenko, The infinite direct products of probability measures and structural similarity,
    Methods Funct. Anal. Topology, vol. 17, no. 1, 2011, pp. 20-28 pdf.

    Albeverio S., V. Koshmanenko, M. Pratsiovytyi, G. Torbin, On fine structure of singularly continuous probability measures and random variables with independent $\widetilde{Q}$-symbols, Methods Funct. Anal. Topology, vol. 17, no. 2, 2011, pp. 97---111 pdf.

    Volodymyr Koshmanenko, Towards the theory of conflict dynamical systems


    Singular bilinear forms in perturbations
    theory of selfadjoint operators, Naukova Dumka, Kiev 1993;
    Copyright © 2007 Institute of Mathematics