Koshmanenko Volodymyr Dmytro

Koshmanenko Volodymyr Dmytro



Publications

    Tetyana Karataieva, Volodymyr Koshmanenko. Existence of Compromise States in the Competition of Alternative Opponents in the Presence of External Support
    Journal of Mathematical Sciences, 282(6), 1-24, (2024)
    DOI: 10.1007/s10958-024-07228-4

    T. V. Karataieva1 and V. D. Koshmanenko. Equilibrium states of the dynamic conflict system for three players with a parameter of influence of the ambient environment.
    Journal of Mathematical Sciences. -- 2023, Vol. 274, No. 6, 861 - 880.
    DOI 10.1007/s10958-023-06649-x

    T. V. Karataieva and V. D. Koshmanenko.Існування компромісних станів у боротьбі альтернативних опонентів при наявності зовнішньої допомоги. Нелiнiйнi коливання. -- 2023, т. 26, № 3, 363 - 385 (2023). DOI: 10.3842/nosc.v26i3.1431

    Koshmanenko V. The theory of dynamical systems of conflict in the framework
    of functional analysis // Збірник праць Ін-ту математики НАН України, т. 20, № 1, 843-872, (2023). DOI: https://doi.org/10.3842/trim.v20n1.530

    V. D. Koshmanenko, O. R. Satur. Sure event problem in multicomponent dynamical
    systems with attractive interaction. Journal of Mathematical Sciences, 249(4):629–646, (2020). DOI: 10.1007/s10958-020-04962-3.

    Tatiana Karataieva, Volodymyr Koshmanenko, Malgorzata J. Krawczyk, Krzysztof
    Kulakowski. Mean field model of a game for power. Phys. A, 525:535–547, (2019)
    DOI: 10.1016/j.physa.2019.03.110.

    Volodymyr Koshmanenko, Viktoria Voloshyna, The emergence of point spectrum in models of conflict dynamical systems, Ukrainian Math. J. - 70, № 12, 1615-1624, (2018).

    V. Koshmanenko, N. Kharchenko, Fixed points of complex systems with attractive interaction. MFAT, 23, no. 2, 164 - 176, (2017). pdf

    Koshmanenko V., Dudkin M., The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators, Operator Theory: Advance and Applications, 253, Birkh\ddot{a}auser, 2016. ISBN 978-3-319-29533-6

    Koshmanenko, V. Spectral Theory for Conflict Dynamical Systems (Ukrainian), Naukova Dumka, Kyiv, 2016, 288p.

    Koshmanenko V., Verygina I. Dynamical systems of conflict in terms of structural measures. Meth. Funct. Anal. and Top. 22, No 1, 81-93, (2016). pdf

    T.V. Karataieva and V.D. Koshmanenko, MODEL OF A DYNAMICAL SYSTEM OF THE “FIRE–WATER” CONFLICT TYPE. Journal of Mathematical Sciences, Vol. 208, No. 5, (2015). pdf


    Koshmanenko, V. Existence theorems of the omega-limit states for conflict dynamical systems, Methods Funct. Anal. and Top. 20, No. 4, 379-390, (2014).

    M.E. Dudkin, V.D. Koshmanenko, Nonzero capacity sets and dense subspaces in scales of the Sobolev spaces, Methods Funct. Anal. Top., 20, No. 3, 213-218, (2014).

    V. Koshmanenko, The infinite direct products of probability measures and structural similarity, Methods Funct. Anal. Topology, vol. 17, no. 1, 20-28, (2011). pdf.

    Koshmanenko, V., Samoilenko, I. The conflict triad dynamical system. Commun. Nonlinear Sci. Numer. Simul. 16, No. 7, 2917–2935, (2011).

    Albeverio S., V. Koshmanenko, M. Pratsiovytyi, G. Torbin, On fine structure of singularly continuous probability measures and random variables with independent $\widetilde{Q}$-symbols, Methods Funct. Anal. Topology, vol. 17, no. 2, 97--111, (2011). pdf.

    S. Albeverio, A. Konstantinov, and V. Koshmanenko, Remarks on the Inverse Spectral Theory for Singularly
    Perturbed Operators, Operator Theory: Advance and Appl.,
    190, 115-122, (2009). MR2568625 pdf.


    S. Albeverio, V. Koshmanenko. I. Samoilenko, The conflict interaction between two complex systems: Cyclic migration, J. Interdisciplinary Math., 11, No 2,
    163-185, (2008). pdf.

    M.V. Bodnarchuk, V. Koshmanenko, I. Samoilenko, Dynamics of conflict interactions between systems with internal structure, Nonlinear Oscillations, 9:4, 423-437, (2007).

    S. Albeverio, M. Dudkin, V. Koshmanenko, A. Konstantinov. On the point spectrum of H{-2}class singular perturbations, Math. Nachr. 208, No. 1-2, 20-27, (2007).

    V. Koshmanenko, Reconstruction of the spectral type of limiting distributions in dynamical conflict systems, Ukrainian Math. J., Vol. 59, No. 6, 771-784 (2007).

    R.V. Bozhok and V.D. Koshmanenko Parametrization of Supersingular Perturbations in the Method of Rigged Hilbert Spaces, Russion J. Math. Phys., 14, 4, 409-416, (2007). MR2366197 pdf.


    M.V. Bodnarchuk, V. Koshmanenko, I. Samoilenko, Dynamics of conflict interactions between systems with internal structure, Nonlinear Oscillations, 9:4, 423-437, (2007).

    V. Koshmanenko, Reconstruction of the spectral type of limiting distributions in dynamical conflict systems, Ukrainian Math. J., Vol. 59, No. 6, 771-784 (2007).

    R.V. Bozhok and V.D. Koshmanenko Parametrization of Supersingular Perturbations in the Method of Rigged Hilbert Spaces, Russion J. Math. Phys., 14, 4, 409-416, (2007). MR2366197 pdf.

    S. Albeverio, V. Koshmanenko, М. Pratsiovytyi, G. Torbin. Spectral properties of image measures under infinite conflict interactions,
    Positivity, 10, 39-49, (2006). pdf.

    V. Koshmanenko, H. Tuhai, Jacobi matrices associated with the inverse eigenvalue problem in the theory of singular perturbations of self-adjoint
    operators, Ukrainian Math. J., Vol. 58, No. 12 (2006).

    S. Albeverio, R.Bozhok, V. Koshmanenko, The rigged Hilbert spaces approach in singular perturbation theory, Reports of Math. Phys., 58, No.2, 227-246,
    (2006). pdf.

    V. Koshmanenko. Construction of singular perturbations by the method of rigged Hilbert spaces, Journal of Phisics A: Mathematical and General, 38, 4999-5009, (2005).

    S. Albeverio, V. Koshmanenko, A. Konstantinov, On inverse spectral theory for singularly perturbed operator: point spectrum, Inverse Problems, 21, 1871-1878, (2005).

    V. Koshmanenko, Construction of singular perturbations by the method of rigged Hilbert spaces, Journal of Physics A: Mathematical and General, 38,
    4999-5009, (2005).

    S. Albeverio, R. Bozhok, M. Dudkin, V. Koshmanenko. Dense subspace in scales of Hilbert spaces, Methods of Functional Analysis and Topology, 11, no.~2, 156--169, (2005).

    R. Bozhok, V. Koshmanenko, Singular perturbations of self-adjoint operators associated with rigged Hilbert spaces, Ukr. Math. J., 57, No. 5, 622-632,
    (2005).

    V. Koshmanenko. The Theorem of Conflict for a pair of Probability Measures, Math. Methods of Operations Research, 59, No.2, 303--313, (2004). pdf.

    V. Koshmanenko. A theorem on conflict for a pair of stochastic vectors, Ukrainian Math. J., 55, No 4, 671–678, (2003). MR2072559 pdf.

    V. Koshmanenko, A variant of the inverse negative eigenvalues problem in singular perturbation theory, Methods of Functional Analysis and Topology, 8, 1, 49-69, (2002).

    V. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Kluwer, Dordrecht, 1999.

    Volodymyr Koshmanenko, Singular bilinear forms in perturbations theory of selfadjoint operators, Naukova Dumka, Kiev 1993.
    Copyright © 2007 Institute of Mathematics