Кошманенко Володимир Дмитрович

Кошманенко Володимир Дмитрович



Публікації

    Tetyana Karataieva, Volodymyr Koshmanenko.
    Existence of Compromise States in the Competition of Alternative Opponents in the Presence of External Support
    Journal of Mathematical Sciences, 282(6), 1-24, (2024)
    DOI: 10.1007/s10958-024-07228-4


    T. V. Karataieva and V. D. Koshmanenko. Equilibrium states of the dynamic conflict system for three players with a parameter of influence of the ambient environment. Journal of Mathematical Sciences. -- 2023, Vol. 274, No. 6, 861 - 880. DOI 10.1007/s10958-023-06649-x

    T. V. Karataieva1 and V. D. Koshmanenko. Існування компромісних станів у боротьбі альтернативних опонентів при наявності зовнішньої допомоги. Нелiнiйнi коливання. -- 2023, т. 26, № 3, 363 - 385 (2023).
    DOI: 10.3842/nosc.v26i3.1431

    Koshmanenko V. The theory of dynamical systems of conflict in the framework
    of functional analysis // Збірник праць Ін-ту математики НАН України, т. 20, № 1, 843-872, (2023). DOI: https://doi.org/10.3842/trim.v20n1.530

    Т. В. Каратаєва, В. Д. Кошманенко, Рівноважні стани динамічної системи конфлікту для трьох гравців із параметром впливу зовнішнього середовища. Нелiнiйнi коливання. т. 25, № 2-3, 207 - 225, (2022).

    Каратаєва Т. В., Кошманенко В. Д. Модель конфліктного соціуму з ефектами зовнішнього впливу. Нелiнiйнi коливання. 24, № 3, 342- 362, (2021).

    V. D. Koshmanenko, O. R. Satur. Sure event problem in multicomponent dynamical
    systems with attractive interaction. Journal of Mathematical Sciences, 249(4):629–646, (2020), doi: 10.1007/s10958-020-04962-3.

    Tatiana Karataieva, Volodymyr Koshmanenko, Malgorzata J. Krawczyk, Krzysztof
    Kulakowski. Mean field model of a game for power. Phys. A, 525:535–547, (2019)
    doi: 10.1016/j.physa.2019.03.110.

    Т. В. Каратаєва, В. Д. Кошманенко, СОЦIУМ, МАТЕМАТИЧНА МОДЕЛЬ ДИНАМIЧНОЇ СИСТЕМИ КОНФЛIКТУ, ISSN 1562-3076. Нелiнiйнi коливання, т. 22, № 1, (2019). pdf.

    V. Koshmanenko, O. Satur, V. Voloshyna. Point spectrum in conflict dynamical
    systems with fractal partition. Methods Funct. Anal. Topology, 25(4):324–338, (2019).

    Volodymyr Koshmanenko, Viktoria Voloshyna, The emergence of point spectrum in models of conflict dynamical systems, Ukrainian Math. J. 70, № 12. - С. 1615-1624, (2018). pdf

    Кошманенко В. Д., Волошина В. О. Граничні розподіли динамічних систем конфлікту з точковим спектром. Укр. мат. журн. 70, № 12. - С. 1615-1624, (2018. pdf

    Koshmanenko V., Verygina I. Dynamical systems of conflict in terms of structural measures. Meth. Funct. Anal. and Top. 22, No 1, 81-93, (2016).
    pdf

    Koshmanenko V., Dudkin M., The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators, Operator Theory: Advance and Applications, 253, Birkh\ddot{a}auser, 2016. ISBN 978-3-319-29533-6

    Koshmanenko, V. Spectral Theory for Conflict Dynamical Systems (Ukrainian), Naukova Dumka, Kyiv, 2016, 288p.

    T.V. Karataieva and V.D. Koshmanenko, MODEL OF A DYNAMICAL SYSTEM OF THE “FIRE–WATER” CONFLICT TYPE. Journal of Mathematical Sciences, Vol. 208, No. 5, (2015). pdf

    V. Koshmanenko, A variant of the inverse negative
    eigenvalues problem in singular perturbation theory, Methods of
    Functional Analysis and Topology}, 8, 1, 49-69, 2002, MR1903129 pdf.

    V. Koshmanenko, A theorem on conflict for a pair of stochastic vectors, Ukrainian Math. J., 55, No 4, 671–678 , 2003, MR2072559 pdf.

    V. Koshmanenko, The Theorem of Conflict for a pair of Probability Measures, Math. Methods of Operations Research, 59, No.2, 303--313, 2004 pdf.

    V. Koshmanenko, Construction of singular perturbations by the method of rigged Hilbert spaces, Journal of Phisics A: Mathematical and General, 38, 4999-5009, 2005.

    S. Albeverio, V. Koshmanenko, A.Konstantinov, On inverse spectral theory for singularly perturbed operator: point spectrum, Inverse Problems, 21, 1871-1878, (2005).

    V. Koshmanenko, Construction of singular
    perturbations by the method of rigged Hilbert spaces,
    Journal of Physics A: Mathematical and General, 38,
    4999-5009, (2005).

    S. Albeverio, R. Bozhok, M.Dudkin, V. Koshmanenko, Dense subspace in scales of Hilbert spaces, Methods of Functional Analysis and Topology, 11, no.~2, 156--169, (2005)

    R. Bozhok, V. Koshmanenko, Singular perturbations of self-adjoint operators associated with rigged
    Hilbert spaces, Ukr. Math. J., 57, No. 5, 622-632,
    (2005)

    S. Albeverio, V. Koshmanenko, М. Pratsiovytyi, G. Torbin, Spectral properties of image measures under infinite conflict interactions,
    Positivity, 10, 39-49, (2006) pdf.

    V. Koshmanenko, H. Tuhai, Jacobi matrices associated with the inverse eigenvalue
    problem in the theory of singular perturbations of self-adjoint
    operators, Ukrainian Math. J., Vol. 58, No. 12 (2006).

    S. Albeverio, R.Bozhok, V. Koshmanenko, The rigged Hilbert spaces approach in singular perturbation theory, Reports of Math. Phys., 58, No.2, 227-246,
    (2006) pdf.

    M.V. Bodnarchuk, V. Koshmanenko, I. Samoilenko, Dynamics of conflict interactions between systems with internal structure, Nonlinear Oscillations, 9:4, 423-437, (2007) .

    S. Albeverio, M.Dudkin, V. Koshmanenko, A.Konstantinov. On the point spectrum of
    H{-2}class singular perturbations, Math. Nachr. 208, No. 1-2, 20-27, (2007).

    V. Koshmanenko, Reconstruction of the spectral type of limiting distributions in dynamical conflict systems, Ukrainian Math. J., Vol. 59, No. 6, 771-784 (2007)

    R.V. Bozhok and V.D. Koshmanenko. Parametrization of Supersingular Perturbations in the Method of Rigged Hilbert Spaces, Russion J. Math. Phys., 14,
    4, 409-416, (2007). MR2366197 pdf.

    S. Albeverio, V. Koshmanenko, I. Samoilenko. The conflict interaction between two complex systems: Cyclic migration, J. Interdisciplinary Math., 11, No 2,
    163-185, (2008).

    S. Albeverio, A. Konstantinov, and V. Koshmanenko, Remarks on the Inverse Spectral Theory for Singularly Perturbed Operators, Operator Theory: Advance and Appl., 190, 115-122, (2009). MR2568625 pdf.

    V. Koshmanenko, I. Samoilenko. The conflict triad dynamical system, Commun Nonlinear Sci Numer Simulat, 16, 2917-2935 (2011) pdf.

    V. Koshmanenko, The infinite direct products of probability measures and structural similarity,
    Methods Funct. Anal. Topology, vol. 17, no. 1, pp. 20-28, (2011) pdf.


    V. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Kluwer, Dordrecht, 1999.

    V. Koshmanenko, Singular bilinear forms in perturbations
    theory of selfadjoint operators, Naukova Dumka, Kiev, 1993.
    Усі права захищені © 2007 Інститут Математики