Кошманенко Володимир Дмитрович
Публікації
T. V. Karataieva1 and V. D. Koshmanenko. Equilibrium states of the dynamic conflict system for three players with a parameter of influence of the ambient environment.
Journal of Mathematical Sciences. -- 2023, Vol. 274, No. 6, 861 - 880.
DOI 10.1007/s10958-023-06649-x
Volodymyr Koshmanenko, Tetyana Karataieva. About compromise states in the battle of opponents with various
external support. Intern. scient. conf.
«MATHEMATICS AND INFORMATION TECHNOLOGIES», Chernivtsi, (2023), 73 - 76.
Volodymyr Koshmanenko.
The conflict problem in terms of stochastic matrices. Workshop “Complex Dynamical Systems: theory, mathematical modelling, computing and application”, (2023)
T. V. Karataieva1 and V. D. Koshmanenko.Існування компромісних станів у боротьбі альтернативних опонентів при наявності зовнішньої допомоги. // Нелiнiйнi коливання. -- 2023, т. 26, № 3, 363 - 385 (2023).
DOI: 10.3842/nosc.v26i3.1431
Volodymyr Koshmanenko, Viktoria Voloshyna, The emergence of point spectrum in models of conflict dynamical systems, Ukrainian Math. J. - 2018. - 70, № 12. - С. 1615-1624.pdf
Tatiana Karataieva, Volodymyr Koshmanenko, Małgorzata J. Krawczyk, Krzysztof Kułakowski, Mean fieldmodel of a game for power, Physica A, 525 (2019), 535–547, pdf.
Т. В. Каратаєва, В. Д. Кошманенко, СОЦIУМ, МАТЕМАТИЧНА МОДЕЛЬ ДИНАМIЧНОЇ СИСТЕМИ КОНФЛIКТУ, ISSN 1562-3076. Нелiнiйнi коливання, 2019, т. 22, № 1 pdf.
Кошманенко В. Д., Волошина В. О. Граничні розподіли динамічних систем конфлікту з точковим спектром // Укр. мат. журн. - 2018. - 70, № 12. - С. 1615-1624.pdf
Koshmanenko V., Verygina I. Dynamical systems of conflict in terms of structural measures. Meth. Funct. Anal. and Top. 22, No 1, 81-93, (2016).
pdf
V. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Kluwer, Dordrecht, 1999.
V. Koshmanenko, A variant of the inverse negative
eigenvalues problem in singular perturbation theory, Methods of
Functional Analysis and Topology}, 8, 1, 49-69, 2002, MR1903129 pdf.
V. Koshmanenko, A theorem on conflict for a pair of stochastic vectors, Ukrainian Math. J., 55, No 4, 671–678 , 2003, MR2072559 pdf.
V. Koshmanenko, The Theorem of Conflict for a pair of Probability Measures, Math. Methods of Operations Research, 59, No.2, 303--313, 2004 pdf.
V. Koshmanenko, Construction of singular perturbations by the method of rigged Hilbert spaces, Journal of Phisics A: Mathematical and General, 38, 4999-5009, 2005.
S. Albeverio, V. Koshmanenko, A.Konstantinov, On inverse spectral theory for singularly perturbed operator: point spectrum, Inverse Problems, 21, 1871-1878, (2005).
V. Koshmanenko, Construction of singular
perturbations by the method of rigged Hilbert spaces,
Journal of Physics A: Mathematical and General, 38,
4999-5009, (2005).
S. Albeverio, R. Bozhok, M.Dudkin, V. Koshmanenko, Dense subspace in scales of Hilbert spaces, Methods of Functional Analysis and Topology, 11, no.~2, 156--169, (2005)
R. Bozhok, V. Koshmanenko, Singular perturbations of self-adjoint operators associated with rigged
Hilbert spaces, Ukr. Math. J., 57, No. 5, 622-632,
(2005)
S. Albeverio, V. Koshmanenko, М. Pratsiovytyi, G. Torbin, Spectral properties of image measures under infinite conflict interactions,
Positivity, 10, 39-49, (2006) pdf.
V. Koshmanenko, H. Tuhai, Jacobi matrices associated with the inverse eigenvalue
problem in the theory of singular perturbations of self-adjoint
operators, Ukrainian Math. J., Vol. 58, No. 12 (2006).
S. Albeverio, R.Bozhok, V. Koshmanenko, The rigged Hilbert spaces approach in singular perturbation
theory, Reports of Math. Phys., 58, No.2, 227-246,
(2006) pdf.
M.V. Bodnarchuk, V. Koshmanenko, I. Samoilenko, Dynamics of conflict interactions between systems with internal
structure, Nonlinear Oscillations, 9:4, 423-437,
(2007) .
S. Albeverio, M.Dudkin, V. Koshmanenko, A.Konstantinov) On the point spectrum of
H{-2}class singular perturbations, Math.
Nachr. 208, No. 1-2, 20-27, (2007).
V. Koshmanenko, Reconstruction of
the spectral type of limiting distributions in dynamical conflict
systems, Ukrainian Math. J., Vol. 59, No. 6, 771-784 (2007)
R.V. Bozhok and V.D. Koshmanenko
Parametrization of Supersingular Perturbations in the Method of
Rigged Hilbert Spaces, Russion J. Math. Phys., 14,
4, 409-416, 2007, MR2366197 pdf.
S. Albeverio, V. Koshmanenko. I. Samoilenko, The conflict interaction between two complex systems: Cyclic
migration, J. Interdisciplinary Math., 11, No 2,
163-185, (2008).
S. Albeverio, A. Konstantinov, and V.
Koshmanenko, Remarks on the Inverse Spectral Theory for Singularly
Perturbed Operators, Operator Theory: Advance and Appl.,
190, 115-122, 2009, MR2568625 pdf.
V. Koshmanenko, I. Samoilenko, The conflict triad dynamical system, Commun Nonlinear Sci
Numer Simulat, 16, 2917-2935 (2011) pdf.
V. Koshmanenko, The infinite direct products of probability measures and structural similarity,
Methods Funct. Anal. Topology, vol. 17, no. 1, 2011, pp. 20-28 pdf.
Singular bilinear forms in perturbations
theory of selfadjoint operators, Naukova Dumka, Kiev 1993 (in Russion);
Journal of Mathematical Sciences. -- 2023, Vol. 274, No. 6, 861 - 880.
DOI 10.1007/s10958-023-06649-x
Volodymyr Koshmanenko, Tetyana Karataieva. About compromise states in the battle of opponents with various
external support. Intern. scient. conf.
«MATHEMATICS AND INFORMATION TECHNOLOGIES», Chernivtsi, (2023), 73 - 76.
Volodymyr Koshmanenko.
The conflict problem in terms of stochastic matrices. Workshop “Complex Dynamical Systems: theory, mathematical modelling, computing and application”, (2023)
T. V. Karataieva1 and V. D. Koshmanenko.Існування компромісних станів у боротьбі альтернативних опонентів при наявності зовнішньої допомоги. // Нелiнiйнi коливання. -- 2023, т. 26, № 3, 363 - 385 (2023).
DOI: 10.3842/nosc.v26i3.1431
Volodymyr Koshmanenko, Viktoria Voloshyna, The emergence of point spectrum in models of conflict dynamical systems, Ukrainian Math. J. - 2018. - 70, № 12. - С. 1615-1624.pdf
Tatiana Karataieva, Volodymyr Koshmanenko, Małgorzata J. Krawczyk, Krzysztof Kułakowski, Mean fieldmodel of a game for power, Physica A, 525 (2019), 535–547, pdf.
Т. В. Каратаєва, В. Д. Кошманенко, СОЦIУМ, МАТЕМАТИЧНА МОДЕЛЬ ДИНАМIЧНОЇ СИСТЕМИ КОНФЛIКТУ, ISSN 1562-3076. Нелiнiйнi коливання, 2019, т. 22, № 1 pdf.
Кошманенко В. Д., Волошина В. О. Граничні розподіли динамічних систем конфлікту з точковим спектром // Укр. мат. журн. - 2018. - 70, № 12. - С. 1615-1624.pdf
Koshmanenko V., Verygina I. Dynamical systems of conflict in terms of structural measures. Meth. Funct. Anal. and Top. 22, No 1, 81-93, (2016).
V. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Kluwer, Dordrecht, 1999.
V. Koshmanenko, A variant of the inverse negative
eigenvalues problem in singular perturbation theory, Methods of
Functional Analysis and Topology}, 8, 1, 49-69, 2002, MR1903129 pdf.
V. Koshmanenko, A theorem on conflict for a pair of stochastic vectors, Ukrainian Math. J., 55, No 4, 671–678 , 2003, MR2072559 pdf.
V. Koshmanenko, The Theorem of Conflict for a pair of Probability Measures, Math. Methods of Operations Research, 59, No.2, 303--313, 2004 pdf.
V. Koshmanenko, Construction of singular perturbations by the method of rigged Hilbert spaces, Journal of Phisics A: Mathematical and General, 38, 4999-5009, 2005.
S. Albeverio, V. Koshmanenko, A.Konstantinov, On inverse spectral theory for singularly perturbed operator: point spectrum, Inverse Problems, 21, 1871-1878, (2005).
V. Koshmanenko, Construction of singular
perturbations by the method of rigged Hilbert spaces,
Journal of Physics A: Mathematical and General, 38,
4999-5009, (2005).
S. Albeverio, R. Bozhok, M.Dudkin, V. Koshmanenko, Dense subspace in scales of Hilbert spaces, Methods of Functional Analysis and Topology, 11, no.~2, 156--169, (2005)
R. Bozhok, V. Koshmanenko, Singular perturbations of self-adjoint operators associated with rigged
Hilbert spaces, Ukr. Math. J., 57, No. 5, 622-632,
(2005)
S. Albeverio, V. Koshmanenko, М. Pratsiovytyi, G. Torbin, Spectral properties of image measures under infinite conflict interactions,
Positivity, 10, 39-49, (2006) pdf.
V. Koshmanenko, H. Tuhai, Jacobi matrices associated with the inverse eigenvalue
problem in the theory of singular perturbations of self-adjoint
operators, Ukrainian Math. J., Vol. 58, No. 12 (2006).
S. Albeverio, R.Bozhok, V. Koshmanenko, The rigged Hilbert spaces approach in singular perturbation
theory, Reports of Math. Phys., 58, No.2, 227-246,
(2006) pdf.
M.V. Bodnarchuk, V. Koshmanenko, I. Samoilenko, Dynamics of conflict interactions between systems with internal
structure, Nonlinear Oscillations, 9:4, 423-437,
(2007) .
S. Albeverio, M.Dudkin, V. Koshmanenko, A.Konstantinov) On the point spectrum of
H{-2}class singular perturbations, Math.
Nachr. 208, No. 1-2, 20-27, (2007).
V. Koshmanenko, Reconstruction of
the spectral type of limiting distributions in dynamical conflict
systems, Ukrainian Math. J., Vol. 59, No. 6, 771-784 (2007)
R.V. Bozhok and V.D. Koshmanenko
Parametrization of Supersingular Perturbations in the Method of
Rigged Hilbert Spaces, Russion J. Math. Phys., 14,
4, 409-416, 2007, MR2366197 pdf.
S. Albeverio, V. Koshmanenko. I. Samoilenko, The conflict interaction between two complex systems: Cyclic
migration, J. Interdisciplinary Math., 11, No 2,
163-185, (2008).
S. Albeverio, A. Konstantinov, and V.
Koshmanenko, Remarks on the Inverse Spectral Theory for Singularly
Perturbed Operators, Operator Theory: Advance and Appl.,
190, 115-122, 2009, MR2568625 pdf.
V. Koshmanenko, I. Samoilenko, The conflict triad dynamical system, Commun Nonlinear Sci
Numer Simulat, 16, 2917-2935 (2011) pdf.
V. Koshmanenko, The infinite direct products of probability measures and structural similarity,
Methods Funct. Anal. Topology, vol. 17, no. 1, 2011, pp. 20-28 pdf.
Singular bilinear forms in perturbations
theory of selfadjoint operators, Naukova Dumka, Kiev 1993 (in Russion);