Burylko Oleksandr A.

Burylko Oleksandr A.



Publications

    1. O. Burylko, M. Wolfrum, S. Yanchuk. Reversible saddle-node separatrix-loop bifurcation, WIAS Preprint, 3133 (2024)
    https://www.wias-berlin.de/publications/wias-publ/run.jsp?template=abstract&type=Preprint&year=2024&number=3133
    pdf

    2. M Wei, A Amann, O Burylko, X Han, S Yanchuk, J Kurths. Synchronization cluster bursting in adaptive oscillators networks (2024)
    https://arxiv.org/pdf/2409.08348
    pdf

    3. O. Burylko, M. Wolfrum, S. Yanchuk, J. Kurths. Time-reversible dynamics in a system of two coupled active rotators. Proceedings of the Royal Society A, 479, 20230401 (2023)
    https://doi.org/10.1098/rspa.2023.0401
    pdf

    4. O. Burylko, E. Martens, and C. Bick. Symmetry breaking yields chimeras in two small populations of kuramoto-type oscillators, Chaos, 32, 093109 (2022)
    https://doi.org/10.1063/5.0088465
    pdf

    5. O. Burylko, Collective dynamics and bifurcations in symmetric networks of phase oscillators. II, Journal of Mathematical Sciences, 253(2), 204-229 (2021)
    https://doi.org/10.1007/s10958-021-05223-7
    pdf

    6. O. Burylko, Collective dynamics and bifurcations in symmetric networks of phase oscillators. I, Journal of Mathematical Sciences, 249(4), 573-600 (2020)
    https://doi.org/10.1007/s10958-020-04959-y
    pdf

    7. O. Burylko, A. Mielke, M. Wolfrum, and S. Yanchuk, Coexistence of Hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators with skew-symmetric coupling, SIAM J. Appl. Dyn. Syst. 17 (3), 2076–2105 (2018)
    https://epubs.siam.org/doi/abs/10.1137/17M1155685
    pdf

    8. O. Burylko, Y. Kazanovich, and R. Borisyuk, Winner-take-all in a phase oscillator system with adaptation, Scientific Reports, 8, 416 (2018)
    https://epubs.siam.org/doi/abs/10.1137/17M1155685
    pdf

    9. P. Ashwin, C. Bick, and O. Burylko, Identical phase oscillator networks: bifurcations, symmetry and reversibility for generalized coupling, Frontiers in Applied Mathematics and Statistics, 2(7), (2016)
    https://doi.org/10.3389/fams.2016.00007
    pdf

    10. P. Ashwin, and O. Burylko, Weak chimeras in minimal networks of coupled phase oscillators, Chaos, 25, 013106 (2015) pdf

    11. O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcation study of phase oscillator systems with attractive and repulsive interaction, Phys. Rev. E, 90, 022911 (2014) pdf

    12. Y. Kazanovich, O. Burylko, and R. Borisyuk, Competition for synchronization in a phase oscillator system, Physica D, 261, 114-124 (2013) pdf

    13. R. Merrison, N. Yousif, F. Njap, U. Hofmann, O. Burylko, and R. Borisyuk, An interactive channel model of the Basal Ganglia: bifurcation analysis under healthy and parkinsonian conditions, The Journal of Mathematical Neuroscience, 3(1): 14, Doi:10.1186/2190-8567-3-14 (2013) pdf

    14. O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcations in phase oscillator networks with a central element, Physica D, 241, 1072-1089 (2012) pdf

    15. O. Burylko, and A. Pikovsky, Desynchronization transitions in nonlinearly coupled phase oscillators, Physica D, 240, 1352-1361 (2011) pdf

    16. P.Ashwin, O.Burylko, and Yu.Maistrenko, Bifurcation to heteroclinic cycles and sensitivity in three and four phase coupled oscillators. Physica D, 237, 454-466 (2008) pdf

    17. Yu. Maistrenko, B. Lysyansky, C. Hauptmann, O. Burylko, and P.A. Tass, Multistability in the Kuramoto model with synaptic plasticity, Phys. Rev. E, 75, 066207 (2007) pdf

    18. P.Ashwin, O.Burylko, Yu.Maistrenko, and O.Popovych, Extreme sensitivity to detuning for globally coupled phase oscillators, Phys. Rev. Lett., 96, 054102 (2006) pdf

    19. Yu. Maistrenko, O. Popovych, O. Burylko, and P.A. Tass, Mechanism of Desynchronization in the Finite-Dimensional Kuramoto Model, Phys. Rev. Lett., 93, 084102 (2004) pdf

    20. O. Burylko, and A. Davydenko, To the problem of complementability of periodic frame to a periodic basis, Nonlinear Oscillations, 4, 458-470 (2001)
    pdf

    21. O. Burylko, and A. Davydenko, To the problem of introduction of local coordinates in the neighbourhood of an invariant toroidal set, Nonlinear Oscillations, 4, 171-190 (2001)

    22. O. Burylko, Green function of weakly regular systems of linear differential equations, Nonlinear Oscillations, 3, 315-322 (2000).

    22. A.M. Samoilenko, O. Burylko, and I.N. Grod, Modules of continuity of derivative invariant tori of linear extensions of dynamical systems, Differential Equations, 36(1), 120-131 (2000) pdf

    24. A.M. Samoilenko, and O. Burylko, The problem of smoothness of the Green function of the problem about bounded invariant manifold, Ukrainian Mathematical Journal, 51, 570-584 (1998) pdf

    25. O. Burylko, Separation of variables in linear extensions of dynamical systems on the torus, Ukrainian Mathematical Journal, 48, 146-150 (1996) pdf
    Copyright © 2007 Institute of Mathematics